Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12323, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811757

RESUMO

Silica-based glasses can be shaped into complex geometries using a variety of additive manufacturing technologies. While the three-dimensional printing of glasses opens unprecedented design opportunities, the development of up-scaled, reliable manufacturing processes is crucial for the broader dissemination of this technology. Here, we design and study phase-separating resins that enable light-based 3D printing of oxide glasses with high-aspect-ratio features and enhanced manufacturing yields. The effect of the resin composition on the microstructure, mechanical properties and delamination resistance of parts printed by digital light processing is investigated with the help of printing experiments, compression tests and electron microscopy analysis. The chemical composition and microstructure of the cured resins were found to strongly affect the stiffness, delamination resistance, and calcination behavior of printed parts. These findings provide useful guidelines to enhance the reliability and yield of the DLP printing process of multicomponent silica-based glasses.

2.
Adv Mater ; 35(46): e2302868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470316

RESUMO

Colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of sub-micrometer particles. While films, droplets, and microcapsules with isotropic structural color have been demonstrated, the shaping of colloidal glasses in three dimensions remains an open manufacturing challenge. Here, a light-based printing platform for the shaping of colloidal glasses into 3D objects featuring complex geometries and vivid structural color after thermal treatment is reported. Rheology, photopolymerization, and calcination experiments are performed to design the photoreactive resins leading to printable colloidal glasses. With the help of microscopy, scattering, and optical characterization, it is shown that the photonic properties of the printed objects reflect the locally ordered microstructure of the glass. The capability of the platform in creating 3D objects with isotropic structural color is illustrated by printing lattices and miniaturized sculpture replicas with unique shapes and multimaterial designs.

3.
Nat Mater ; 19(2): 212-217, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31712744

RESUMO

The digital fabrication of oxide glasses by three-dimensional (3D) printing represents a major paradigm shift in the way glasses are designed and manufactured, opening opportunities to explore functionalities inaccessible by current technologies. The few enticing examples of 3D printed glasses are limited in their chemical compositions and suffer from the low resolution achievable with particle-based or molten glass technologies. Here, we report a digital light-processing 3D printing platform that exploits the photopolymerization-induced phase separation of hybrid resins to create glass parts with complex shapes, high spatial resolutions and multi-oxide chemical compositions. Analogously to conventional porous glass fabrication methods, we exploit phase separation phenomena to fabricate complex glass parts displaying light-controlled multiscale porosity and dense multicomponent transparent glasses with arbitrary geometry using a desktop printer. Because most functional properties of glasses emerge from their transparency and multicomponent nature, this 3D printing platform may be useful for distinct technologies, sciences and arts.

4.
Langmuir ; 34(3): 886-895, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28753321

RESUMO

Colloidal particles are extensively used to assemble materials from bulk suspensions or after adsorption and confinement at fluid interfaces (e.g., oil-water interfaces). Interestingly, and often underestimated, optimizing interactions for bulk assembly may not lead to the same behavior at fluid interfaces. In this work, we compare model composite nanoparticles with a silica core coated with a poly-N-isopropylacrylamide hydrogel shell in bulk aqueous suspensions and after adsorption at an oil-water interface. Bulk properties are analyzed by confocal differential dynamic microscopy, a recently developed technique that allows one to simultaneously obtain structural and dynamical information up to high volume fractions. The results demonstrate excellent colloidal stability and the absence of aggregation in all cases. The behavior at the interface, investigated by a range of complementary approaches, is instead different. The same hydrogel shells that stabilize the particles in the bulk deform at the interface and induce attractive capillary interactions that lead to aggregation even at very low area fractions (surface coverage). Upon further compression of a particle-laden interface, a structural transition is observed where closely packed particle aggregates form. These findings emphasize the manifestation of different, and possibly unexpected, responses for sterically stabilized nanoparticles in the bulk and upon interfacial confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...