Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 13: 14, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24460609

RESUMO

BACKGROUND: Deregulated energetics is a property of most cancer cells. This phenomenon, known as the Warburg Effect or aerobic glycolysis, is characterized by increased glucose uptake, lactate export and extracellular acidification, even in the presence of oxygen. ß-alanine is a non-essential amino acid that has previously been shown to be metabolized into carnosine, which functions as an intracellular buffer. Because of this buffering capacity, we investigated the effects of ß-alanine on the metabolic cancerous phenotype. METHODS: Non-malignant MCF-10a and malignant MCF-7 breast epithelial cells were treated with ß-alanine at 100 mM for 24 hours. Aerobic glycolysis was quantified by measuring extracellular acidification rate (ECAR) and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR). mRNA of metabolism-related genes was quantified by qRT-PCR with corresponding protein expression quantified by immunoblotting, or by flow cytometry which was verified by confocal microscopy. Mitochondrial content was quantified using a mitochondria-specific dye and measured by flow cytometry. RESULTS: Cells treated with ß-alanine displayed significantly suppressed basal and peak ECAR (aerobic glycolysis), with simultaneous increase in glucose transporter 1 (GLUT1). Additionally, cells treated with ß-alanine exhibited significantly reduced basal and peak OCR (oxidative metabolism), which was accompanied by reduction in mitochondrial content with subsequent suppression of genes which promote mitochondrial biosynthesis. Suppression of glycolytic and oxidative metabolism by ß-alanine resulted in the reduction of total metabolic rate, although cell viability was not affected. Because ß-alanine treatment reduces extracellular acidity, a constituent of the invasive microenvironment that promotes progression, we investigated the effect of ß-alanine on breast cell viability and migration. ß-alanine was shown to reduce both cell migration and proliferation without acting in a cytotoxic fashion. Moreover, ß-alanine significantly increased malignant cell sensitivity to doxorubicin, suggesting a potential role as a co-therapeutic agent. CONCLUSION: Taken together, our results suggest that ß-alanine may elicit several anti-tumor effects. Our observations support the need for further investigation into the mechanism(s) of action and specificity of ß-alanine as a co-therapeutic agent in the treatment of breast tumors.


Assuntos
Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Glicólise/efeitos dos fármacos , beta-Alanina/farmacologia , Western Blotting , Neoplasias da Mama/patologia , Citometria de Fluxo , Glicólise/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Células MCF-7 , Microscopia Confocal , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
2.
Nutr Metab (Lond) ; 9(1): 101, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23148693

RESUMO

BACKGROUND: Obesity is a common pathology with increasing incidence, and is associated with increased mortality and healthcare costs. Several treatment options for obesity are currently available ranging from behavioral modifications to pharmaceutical agents. Many popular dietary supplements claim to enhance weight loss by acting as metabolic stimulators, however direct tests of their effect on metabolism have not been performed. PURPOSE: This work identified the effects popular dietary supplements on metabolic rate and mitochondrial biosynthesis in human skeletal muscle cells. METHODS: Human rhabdomyosarcoma cells were treated with popular dietary supplements at varied doses for 24 hours. Peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α), an important stimulator of mitochondrial biosynthesis, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mitochondrial content was measured using flow cytometry confirmed with confocal microscopy. Glycolytic metabolism was quantified by measuring extracellular acidification rate (ECAR) and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR). Total relative metabolism was quantified using WST-1 end point assay. RESULTS: Treatment of human rhabdomyosarcoma cells with dietary supplements OxyElite Pro (OEP) or Cellucore HD (CHD) induced PGC-1α leading to significantly increased mitochondrial content. Glycolytic and oxidative capacities were also significantly increased following treatment with OEP or CHD. CONCLUSION: This is the first work to identify metabolic adaptations in muscle cells following treatment with popular dietary supplements including enhanced mitochondrial biosynthesis, and glycolytic, oxidative and total metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...