Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025723

RESUMO

Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.


Assuntos
Microbiota , Humanos , Viés de Seleção , Microbiota/genética , Poeira/análise , Bactérias/genética , Umidade
2.
Sci Total Environ ; 753: 142013, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32890867

RESUMO

Companies in the wood industry are constantly developing their outdoor products. The possibility of using bio-based chemicals as an alternative to traditional wood preservatives-regulated in Europe by The Biocidal Products Regulation No 528/2012-has been considered, but chemical leaching from the wood decreases its effectiveness and may negatively affect the environment. This study aims to compare the effectiveness of bio-based chemicals with potential use in wood preservation to commercially available preservatives, to investigate their fixation to wood and their ecotoxicity and to quantify the potentially toxic elements leached from the wood. Pyrolysis distillates of tree bark, organic acids found in distillates, Colatan GT10 tannin extract and log soaking liquid as a hardwood veneer process residue were tested and compared with commercial pine oil and a copper-based wood preservative. In the wood decay test of impregnated pine sapwood specimens, Colatan GT10 extract performed as well as the commercial wood preservatives. The same decay trial with leached specimens significantly reduced the performance of the bio-based chemicals. The results of the ecotoxicity test with photoluminescent Aliivibrio fischeri bacteria showed that many bio-based chemicals with potential use in wood preservation have markedly lower ecotoxicity than commercially available wood preservatives, but the ecotoxicity of some bio-based chemicals is higher, as in the case of some of the pyrolysis distillates. The wood preservation efficiency and the ecotoxicity of the studied chemicals had a poor correlation, implying that other factors besides treatment agent toxicity play a role in deterring fungal growth on treated wood. The amount of elemental toxins in the leachates was low. These results emphasize the importance of the chemical ecotoxicity of bio-based preservative compounds, as their detrimental effect on the environment can be higher than that of the traditional preservatives unless effectively linked to wood to prevent leaching.


Assuntos
Pinus , Madeira , Cobre/análise , Cobre/toxicidade , Europa (Continente) , Fungos , Madeira/química
3.
Tree Physiol ; 40(6): 782-795, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32186729

RESUMO

Arbuscular mycorrhizas (AMs) prevail in warm and dry climates and ectomycorrhizas (EMs) in cold and humid climates. We suggest that the fungal symbionts benefit their host plants especially in the corresponding conditions. The hypothesis tested was that AM plants are more drought-resistant than EM or nonmycorrhizal (NM) plants. Grey alder (Alnus incana (L.) Moench) seedlings were inoculated with two species of either AM or EM fungi or none. In one controlled-environment experiment, there was a watering and a drought treatment. Another set of seedlings were not watered until permanent wilting. The AM plants were somewhat smaller than EM and NM, and at the early stage of the drought treatment, the soil-moisture content was slightly higher in the AM pots. Shoot water potential was highest in the AM treatment during severe drought, while stomatal conductance and photosynthesis did not show a mycorrhizal effect. In the lethal-drought set, the AM plants maintained their leaves longer than EM and NM plants, and the AM seedlings survived longer than NM seedlings. Foliar phosphorus and sulfur concentrations remained higher in AM plants than EM or NM, but potassium, copper and iron increased in EM during drought. The root tannin concentration was lower in AM than EM and drought doubled it. Although the difference in drought resistance was not large, the hypothesis was supported by the better performance of AM plants during a severe short-term drought. Sustained phosphorus nutrition during drought in AM plants was a possible reason for this. Moreover, the higher foliar sulfur and lower metal-nutrient concentrations in AM may reflect differences in nutrient uptake or (re)translocation during drought, which merit further research. The much larger tannin concentrations in EM root systems than AM did not appear to protect the EM plants from drought. The differential tannin accumulation in AM and EM plants needs further attention.


Assuntos
Alnus , Micorrizas , Secas , Raízes de Plantas , Plântula , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...