Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118405

RESUMO

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Assuntos
Antineoplásicos , Rabdomiossarcoma , Adulto , Humanos , Criança , Recidiva Local de Neoplasia/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/patologia , Morte Celular
2.
Cell Death Discov ; 9(1): 230, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414800

RESUMO

Toll-like receptor 3 (TLR3) is a pattern recognition receptor mainly known for its role in innate immune response to infection. Indeed, binding of double-stranded RNA (dsRNA) to TLR3 triggers a pro-inflammatory cascade leading to cytokine release and immune cell activation. Its anti-tumoral potential has emerged progressively, associated with a direct impact on tumor cell death induction and with an indirect action on immune system reactivation. Accordingly, TLR3 agonists are currently being tested in clinical trials for several adult cancers. Meanwhile, TLR3 variants have been linked to auto-immune disorders, and as risk factors of viral infection and cancers. However, aside from neuroblastoma, TLR3 role in childhood cancers has not been evaluated. Here, by integrating public transcriptomic data of pediatric tumors, we unveil that high TLR3 expression is largely associated with a better prognosis in childhood sarcomas. Using osteosarcomas and rhabdomyosarcomas as models, we show that TLR3 efficiently drives tumor cell death in vitro and induces tumor regression in vivo. Interestingly, this anti-tumoral effect was lost in cells expressing the homozygous TLR3 L412F polymorphism, which is enriched in a rhabdomyosarcomas cohort. Thus, our results demonstrate the therapeutic potential associated with the targeting of TLR3 in pediatric sarcomas, but also the need to stratify patients eligible for this clinical approach with respect to the TLR3 variants expressed.

3.
Front Cell Dev Biol ; 9: 674219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327198

RESUMO

Unlike adult cancers that frequently result from the accumulation in time of mutational "hits" often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.

4.
Environ Pollut ; 270: 116243, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326921

RESUMO

BACKGROUND: Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue. OBJECTIVES: We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice. METHODS: Pregnant C57BL6/J mice were exposed to BPS (1.5 µg/kg bw/day ie a human equivalent dose of 0.12 µg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed. RESULTS: In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females. CONCLUSIONS: BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Camundongos , Fenóis/toxicidade , Gravidez , Sulfonas
5.
Cancers (Basel) ; 12(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121537

RESUMO

Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.

6.
Sci Rep ; 6: 27278, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255611

RESUMO

The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked ß-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Hexosaminas/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Acetilglucosamina/metabolismo , Animais , Vias Biossintéticas , Linhagem Celular , Células HeLa , Humanos , Camundongos , Transferases de Grupos Nitrogenados/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...