Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Evol Med Public Health ; 11(1): 163-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325804

RESUMO

Background and objectives: The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy. Methodology: We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with Enterobacter hormaechei, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment. Results: The entirety of the genetic change is consistent with de novo mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population. Conclusions: Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.

2.
Nat Ecol Evol ; 5(9): 1233-1242, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312522

RESUMO

During antibiotic treatment, the evolution of bacterial pathogens is fundamentally affected by bottlenecks and varying selection levels imposed by the drugs. Bottlenecks-that is, reductions in bacterial population size-lead to an increased influence of random effects (genetic drift) during bacterial evolution, and varying antibiotic concentrations during treatment may favour distinct resistance variants. Both aspects influence the process of bacterial evolution during antibiotic therapy and thereby treatment outcome. Surprisingly, the joint influence of these interconnected factors on the evolution of antibiotic resistance remains largely unexplored. Here we combine evolution experiments with genomic and genetic analyses to demonstrate that bottleneck size and antibiotic-induced selection reproducibly impact the evolutionary path to resistance in pathogenic Pseudomonas aeruginosa, one of the most problematic opportunistic human pathogens. Resistance is favoured-expectedly-under high antibiotic selection and weak bottlenecks, but-unexpectedly-also under low antibiotic selection and severe bottlenecks. The latter is likely to result from a reduced probability of losing favourable variants through drift under weak selection. Moreover, the absence of high resistance under low selection and weak bottlenecks is caused by the spread of low-resistance variants with high competitive fitness under these conditions. We conclude that bottlenecks, in combination with drug-induced selection, are currently neglected key determinants of pathogen evolution and outcome of antibiotic treatment.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Pseudomonas aeruginosa/genética
3.
Mol Biol Evol ; 38(2): 449-464, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931584

RESUMO

Combination therapy is a common antibiotic treatment strategy that aims at minimizing the risk of resistance evolution in several infectious diseases. Nonetheless, evidence supporting its efficacy against the nosocomial opportunistic pathogen Pseudomonas aeruginosa remains elusive. Identification of the possible evolutionary paths to resistance in multidrug environments can help to explain treatment outcome. For this purpose, we here performed whole-genome sequencing of 127 previously evolved populations of P. aeruginosa adapted to sublethal doses of distinct antibiotic combinations and corresponding single-drug treatments, and experimentally characterized several of the identified variants. We found that alterations in the regulation of efflux pumps are the most favored mechanism of resistance, regardless of the environment. Unexpectedly, we repeatedly identified intergenic variants in the adapted populations, often with no additional mutations and usually associated with genes involved in efflux pump expression, possibly indicating a regulatory function of the intergenic regions. The experimental analysis of these variants demonstrated that the intergenic changes caused similar increases in resistance against single and multidrug treatments as those seen for efflux regulatory gene mutants. Surprisingly, we could find no substantial fitness costs for a majority of these variants, most likely enhancing their competitiveness toward sensitive cells, even in antibiotic-free environments. We conclude that the regulation of efflux is a central target of antibiotic-mediated selection in P. aeruginosa and that, importantly, changes in intergenic regions may represent a usually neglected alternative process underlying bacterial resistance evolution, which clearly deserves further attention in the future.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Pseudomonas aeruginosa/genética , DNA Intergênico
4.
Evol Med Public Health ; 2020(1): 102-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983536

RESUMO

We describe the case of a patient with pancreatitis followed by intra-abdominal infection in which source control was not achieved. Antimicrobial therapy led to the emergence of resistance in multiple organisms through multiple population dynamics processes. While the initial insult was not due to infection, subsequent infections with resistant organisms contributed to a poor outcome for the patient. Though resistance evolution was a known risk, it was difficult to predict the next organism that would arise in the setting of antibiotic pressure and its resistance profile. This case illustrates the clinical challenge of antibiotic resistance that current approaches cannot readily prevent. LAY SUMMARY Why is antibiotic resistance management so complex? Distinct evolutionary processes unfold when antibiotic treatment is initiated that lead, separately and together, to the undesired outcome of antibiotic resistance. This clinical case exemplifies some of those processes and highlights the dire need for evolutionary risk assessments to be incorporated into clinical decision making.

6.
Elife ; 82019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31658946

RESUMO

Evolution is at the core of the impending antibiotic crisis. Sustainable therapy must thus account for the adaptive potential of pathogens. One option is to exploit evolutionary trade-offs, like collateral sensitivity, where evolved resistance to one antibiotic causes hypersensitivity to another one. To date, the evolutionary stability and thus clinical utility of this trade-off is unclear. We performed a critical experimental test on this key requirement, using evolution experiments with Pseudomonas aeruginosa, and identified three main outcomes: (i) bacteria commonly failed to counter hypersensitivity and went extinct; (ii) hypersensitivity sometimes converted into multidrug resistance; and (iii) resistance gains frequently caused re-sensitization to the previous drug, thereby maintaining the trade-off. Drug order affected the evolutionary outcome, most likely due to variation in the effect size of collateral sensitivity, epistasis among adaptive mutations, and fitness costs. Our finding of robust genetic trade-offs and drug-order effects can guide design of evolution-informed antibiotic therapy.


Assuntos
Antibacterianos/farmacologia , Evolução Biológica , Modelos Biológicos , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Epistasia Genética/efeitos dos fármacos , Genoma Bacteriano , Mutação/genética , Pseudomonas aeruginosa/genética
7.
J Antimicrob Chemother ; 74(10): 2916-2925, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31355848

RESUMO

BACKGROUND: Chronic pulmonary infections by Pseudomonas aeruginosa require frequent intravenous antibiotic treatment in cystic fibrosis (CF) patients. Emergence of antimicrobial resistance is common in these patients, which to date has been investigated at long-term intervals only. OBJECTIVES: To investigate under close to real-time conditions the dynamics of the response by P. aeruginosa to a single course of antibiotic therapy and the potentially associated rapid spread of antimicrobial resistance, as well as the impact on the airway microbiome. METHODS: We investigated a cohort of adult CF patients that were treated with a single course of antimicrobial combination therapy. Using daily sampling during treatment, we quantified the expression of resistance by P. aeruginosa (median of six isolates per daily sample, 347 isolates in total), measured bacterial load by P. aeruginosa-specific quantitative PCR and characterized the airway microbiome with a 16S rRNA-based approach. WGS was performed to reconstruct intrapatient strain phylogenies. RESULTS: In two patients, we found rapid and large increases in resistance to meropenem and ceftazidime. Phylogenetic reconstruction of strain relationships revealed that resistance shifts are probably due to de novo evolution and/or the selection of resistant subpopulations. We observed high interindividual variation in the reduction of bacterial load, microbiome composition and antibiotic resistance. CONCLUSIONS: We show that CF-associated P. aeruginosa populations can quickly respond to antibiotic therapy and that responses are patient specific. Thus, resistance evolution can be a direct consequence of treatment, and drug efficacy can be lost much faster than usually assumed. The consideration of these patient-specific rapid resistance shifts can help to improve treatment of CF-associated infections, for example by deeper sampling of bacteria for diagnostics, repeated monitoring of pathogen susceptibility and switching between drugs.


Assuntos
Antibacterianos/farmacologia , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Adulto , Antibacterianos/administração & dosagem , Carga Bacteriana , Análise por Conglomerados , Estudos de Coortes , Fibrose Cística/complicações , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Masculino , Filogenia , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Adulto Jovem , beta-Lactamas/administração & dosagem
8.
PLoS Biol ; 16(4): e2004356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708964

RESUMO

The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction-irrespective of whether combinations were compared at the same level of inhibition or not-while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution.


Assuntos
Adaptação Fisiológica , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Teorema de Bayes , Evolução Biológica , Antagonismo de Drogas , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
9.
Mol Biol Evol ; 34(9): 2229-2244, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541480

RESUMO

When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in ß-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.


Assuntos
Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Bactérias/genética , Evolução Biológica , Evolução Molecular , Genoma Bacteriano/genética , Genômica/métodos , Testes de Sensibilidade Microbiana , Mutação
10.
Dev Comp Immunol ; 74: 237-242, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28499858

RESUMO

C-type lectin-like domain (CTLD) proteins occupy crucial functions in the immune system of vertebrates, but their role in invertebrate immunity is much less understood. The nematode Caenorhabditis elegans possesses a highly diverse CTLD protein encoding (clec) gene repertoire. A role of C. elegans clec genes in pathogen defense is always assumed, yet experimental evidence for clec immune function is rare. To systematically test the potential function of clec genes in the C. elegans defense against pathogens, we screened 39 clec mutants for survival on the Gram-positive pathogen Bacillus thuringiensis (BT18247) and 37 clec mutants on the Gram-negative pathogen Pseudomonas aeruginosa (PA14). We found that clec mutants can exhibit either decreased or, unexpectedly, increased resistance to infection. Since we observed high escape behavior for some of the clec mutants on BT18247 during the initial screen, we then asked if increased pathogen avoidance behavior underlies the increased resistance of some clec mutants. We thus tested lawn leaving behavior of the resistant clec-29(ok3181), clec-34(ok2120), clec-151(ok2264), and C54G4.4(ok2110) mutant on BT18247. We found that C54G4.4(ok2110) mutant animals exhibit a particularly strong lawn leaving behavior, in addition to prolonged feeding cessation when exposed to BT18247. Together, our results indicate that clec genes mediate both resistance and susceptibility to infection. Further, behavioral analyses of the C54G4.4(ok2110) mutant implicate C54G4.4 in the regulation of pathogen avoidance behavior towards BT18247. We conclude that C. elegans clec genes may act both as positive and negative regulators of physiological as well as behavioral immune defense responses.


Assuntos
Bacillus thuringiensis/imunologia , Infecções Bacterianas/imunologia , Comportamento Animal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Lectinas Tipo C/genética , Mutação/genética , Infecções por Nematoides/imunologia , Domínios Proteicos/genética , Pseudomonas aeruginosa/imunologia , Animais , Proteínas de Caenorhabditis elegans/genética , Imunidade Inata , Lectinas Tipo C/metabolismo
11.
Evol Med Public Health ; 2016(1): 182-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193199

RESUMO

BACKGROUND AND OBJECTIVES: Cystic fibrosis patients suffer from chronic lung infections that require long-term antibiotic therapy. Pseudomonas readily evolve resistance, rendering antibiotics ineffective. In vitro experiments suggest that resistant bacteria may be treated by exploiting their collateral sensitivity to other antibiotics. Here, we investigate correlations of sensitivity and resistance profiles of Pseudomonas aeruginosa that naturally adapted to antibiotics in the cystic fibrosis lung. METHODOLOGY: Resistance profiles for 13 antibiotics were obtained using broth dilution, E-test and VITEK mass spectroscopy. Genetic variants were determined from whole-genome sequences and interrelationships among isolates were analyzed using 13 MLST loci. RESULT: Our study focused on 45 isolates from 13 patients under documented treatment with antibiotics. Forty percent of these were clinically resistant and 15% multi-drug resistant. Colistin resistance was found once, despite continuous colistin treatment and even though colistin resistance can readily evolve experimentally in the laboratory. Patients typically harbored multiple genetically and phenotypically distinct clones. However, genetically similar clones often had dissimilar resistance profiles. Isolates showed mutations in genes encoding cell wall synthesis, alginate production, efflux pumps and antibiotic modifying enzymes. Cross-resistance was commonly observed within antibiotic classes and between aminoglycosides and ß-lactam antibiotics. No evidence was found for consistent phenotypic resistance to one antibiotic and sensitivity to another within one genotype. CONCLUSIONS AND IMPLICATIONS: Evidence supporting potential collateral sensitivity in clinical P. aeruginosa isolates remains equivocal. However, cross-resistance within antibiotic classes is common. Colistin therapy is promising since resistance to it was rare despite its intensive use in the studied patients.

12.
Evol Appl ; 8(10): 945-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640520

RESUMO

Antibiotic resistance is a growing concern to public health. New treatment strategies may alleviate the situation by slowing down the evolution of resistance. Here, we evaluated sequential treatment protocols using two fully independent laboratory-controlled evolution experiments with the human pathogen Pseudomonas aeruginosa PA14 and two pairs of clinically relevant antibiotics (doripenem/ciprofloxacin and cefsulodin/gentamicin). Our results consistently show that the sequential application of two antibiotics decelerates resistance evolution relative to monotherapy. Sequential treatment enhanced population extinction although we applied antibiotics at sublethal dosage. In both experiments, we identified an order effect of the antibiotics used in the sequential protocol, leading to significant variation in the long-term efficacy of the tested protocols. These variations appear to be caused by asymmetric evolutionary constraints, whereby adaptation to one drug slowed down adaptation to the other drug, but not vice versa. An understanding of such asymmetric constraints may help future development of evolutionary robust treatments against infectious disease.

13.
Ecol Evol ; 5(16): 3250-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26380661

RESUMO

The nematode Caenorhabditis elegans is a central laboratory model system in almost all biological disciplines, yet its natural life history and population biology are largely unexplored. Such information is essential for in-depth understanding of the nematode's biology because its natural ecology provides the context, in which its traits and the underlying molecular mechanisms evolved. We characterized natural phenotypic and genetic variation among North German C. elegans isolates. We used the unique opportunity to compare samples collected 10 years apart from the same compost heap and additionally included recent samples for this and a second site, collected across a 1.5-year period. Our analysis revealed significant population genetic differentiation between locations, across the 10-year time period, but for only one location a trend across the shorter time frame. Significant variation was similarly found for phenotypic traits of likely importance in nature, such as choice behavior and population growth in the presence of pathogens or naturally associated bacteria. Phenotypic variation was significantly influenced by C. elegans genotype, time of isolation, and sampling site. The here studied C. elegans isolates may provide a valuable, genetically variable resource for future dissection of naturally relevant gene functions.

14.
Rev. colomb. cancerol ; 19(3): 173-179, jul.-set. 2015. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-769091

RESUMO

Los tumores anficrinos de la glándula mamaria son lesiones duales muy poco frecuentes con diferenciación epitelial y neuroendocrina de una misma célula. Nosotros presentamos el caso de una mujer con masa en el seno derecho. El estudio histopatológico mostró un tumor maligno constituido por células pequeñas entremezcladas con algunas células con aspecto en anillo de sello. El uso de anticuerpos monoclonales mostró inmunoreactividad para marcadores epiteliales y neuroendocrinos en las células malignas. Estas características permitieron hacer el diagnóstico de un tumor anficrino basado en la expresión en la misma célula de marcadores epiteliales y neuroendocrinos. El diagnóstico diferencial debe realizarse con los tumores de colisión o con metástasis. La interpretación rigurosa de la inmunohistoquímica en las células neoplásicas en un tumor anficrino es útil para distinguir esta entidad de otras patológicas con características morfológicas similares.


Amphicrine tumours of the mammary gland are very rare dual lesions with epithelial and neuroendocrine differentiation in the same cell. We report the case of a woman with a mass in the right breast. The histopathology study showed a malignant tumour formed by small cells inter-mixed with some cells with a signet ring appearance. The use of antibodies showed immunoreactivity for epithelial and neuroendocrine markers in the malignant cells. These characteristics enable the diagnosis of an amphicrine tumour, based on the expression of epithelial and neuroendocrine markers in the same cell. The differential diagnosis must be made with collision tumours or with metastasis. The rigorous interpretation of the immunohistochemistry in the malignant cells in an amphicrine tumour is useful in order to distinguish this tumour from other diseases with similar morphological characteristics.


Assuntos
Humanos , Feminino , Mulheres , Carcinoma , Células , Glândulas Mamárias Humanas , Mama , Anticorpos Monoclonais , Metástase Neoplásica
15.
BMC Ecol ; 15: 19, 2015 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170141

RESUMO

BACKGROUND: How do very small animals with limited long-distance dispersal abilities move between locations, especially if they prefer ephemeral micro-habitats that are only available for short periods of time? The free-living model nematode Caenorhabditis elegans and several congeneric taxa appear to be common in such short-lived environments, for example decomposing fruits or other rotting plant material. Dispersal is usually assumed to depend on animal vectors, yet all current data is based on only a limited number of studies. In our project we performed three comprehensive field surveys on possible invertebrate vectors in North German locations containing populations of C. elegans and two related species, especially C. remanei, and combined these screens with an experimental analysis of persistence in one of the vector taxa. RESULTS: Our field survey revealed that Caenorhabditis nematodes are commonly found in slugs, isopods, and chilopods, but are not present in the remaining taxonomic groups examined. Surprisingly, the nematodes were frequently isolated from the intestines of slugs, even if slugs were not collected in close association with suitable substrates for Caenorhabditis proliferation. This suggests that the nematodes are able to enter the slug intestines and persist for certain periods of time. Our experimental analysis confirmed the ability of C. elegans to invade slug intestines and subsequently be excreted alive with the slug feces, although only for short time periods under laboratory conditions. CONCLUSIONS: We conclude that three invertebrate taxonomic groups represent potential vectors of Caenorhabditis nematodes. The nematodes appear to have evolved specific adaptations to enter and persist in the harsh environment of slug intestines, possibly indicating first steps towards a parasitic life-style.


Assuntos
Distribuição Animal , Caenorhabditis/fisiologia , Ecossistema , Gastrópodes/parasitologia , Animais , Caenorhabditis/classificação , Código de Barras de DNA Taxonômico , Gastrópodes/classificação , Alemanha , Intestinos/parasitologia , Isópodes , Dados de Sequência Molecular
16.
Microb Ecol ; 66(4): 897-905, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013213

RESUMO

Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.


Assuntos
Infecções Bacterianas/veterinária , Bacteriófagos/fisiologia , Evolução Biológica , Terapia Biológica/veterinária , Penaeidae/microbiologia , Vibrio/genética , Vibrio/virologia , Animais , Aquicultura , Infecções Bacterianas/microbiologia , Infecções Bacterianas/terapia , Bacteriófagos/classificação , Bacteriófagos/genética , Humanos
17.
Drug Resist Updat ; 16(6): 96-107, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24594007

RESUMO

Antibiotic treatments increasingly fail due to rapid dissemination of drug resistance. Comparative genomics of clinical isolates highlights the role of de novo adaptive mutations and horizontal gene transfer (HGT) in the acquisition of resistance. Yet it cannot fully describe the selective pressures and evolutionary trajectories that yielded today's problematic strains. Experimental evolution offers a compelling addition to such studies because the combination of replicated experiments under tightly controlled conditions with genomics of intermediate time points allows real-time reconstruction of evolutionary trajectories. Recent studies thus established causal links between antibiotic deployment therapies and the course and timing of mutations, the cost of resistance and the likelihood of compensating mutations. They particularly underscored the importance of long-term effects. Similar investigations incorporating horizontal gene transfer (HGT) are wanting, likely because of difficulties associated with its integration into experiments. In this review, we describe current advances in experimental evolution of antibiotic resistance and reflect on ways to incorporate horizontal gene transfer into the approach. We contend it provides a powerful tool for systematic and highly controlled dissection of evolutionary paths to antibiotic resistance that needs to be taken into account for the development of sustainable anti-bacterial treatment strategies.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias/genética , Transferência Genética Horizontal , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...