Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 201(3): 193-202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978649

RESUMO

Lipopolysaccharide (LPS) injections during pregnancy are well established as models for pregnancy complications, including fetal growth restriction (FGR), thrombophilia, preterm labor and abortion. Indeed, inflammation, as induced by LPS injection has been described as a pivotal factor in cases of miscarriage related to placental tissue damage. The phosphodiesterase-5 inhibitor sildenafil (Viagra®) is currently used to treat FGR cases in women, while low-molecular weight heparin (Fragmin®) is a standard treatment for recurrent miscarriage (RM). However, the pathways and cellular dynamics involved in RM are not completely understood. The aim of this study was to evaluate the protective effect of sildenafil and dalteparin in a mouse model of LPS-induced abortion. Histopathology, ultrastructural analysis and immunofluorescence for P-selectin were studied in two different placental cell types: trophoblast cells and labyrinth endothelial cells. Treatment with sildenafil either alone or in combination with heparin showed the best response against LPS-induced injury during pregnancy. In conclusion, our results support the use of these drugs as future therapeutic agents that may protect the placenta against inflammatory injury in RM events. Analyses of the ultrastructure and placental immunophysiology are important to understand the mechanism underlying RM. These findings may spark future studies and aid in the development of new therapies in cases of RM.


Assuntos
Aborto Habitual/tratamento farmacológico , Anticoagulantes/uso terapêutico , Dalteparina/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , Placenta/efeitos dos fármacos , Placenta/patologia , Citrato de Sildenafila/uso terapêutico , Aborto Habitual/imunologia , Aborto Habitual/patologia , Animais , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Placenta/citologia , Placenta/imunologia , Gravidez , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/imunologia , Trofoblastos/patologia
2.
Brain Res ; 1627: 119-33, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26404052

RESUMO

Sildenafil (Viagra®) has recently been found to have a neuroprotective effect, which occurs through the inhibition of inflammation and demyelination in the cerebellum. However, the mechanism of action of sildenafil remains unknown. AMPK, the regulatory protein of the lipid and glucose metabolism, plays a protective role by activating the eNOS enzyme. The production of a nanomolar concentration of NO by eNOS has an anti-inflammatory effect through the cGMP signaling pathway and plays an important role in the regulation of the nuclear transcription factor (NFkB), preventing the expression of inflammatory genes. The present study investigated whether AMPK-eNOS-NO-cGMP-IКßα-NFkB is involved in the mechanism of action of sildenafil in a cuprizone-demyelination model. Neuroinflammation and demyelination induced by cuprizone in rodents have been widely used as a model of MS. In the present study, five male C57BL/6 mice (7-10 weeks old) were used. Over a four week period, the groups received: cuprizone (CPZ) 0.2% mixed in feed; CPZ in the diet, combined with the administration of sildenafil (Viagra®, Pfizer, 25mg/kg) orally in drinking water, starting concurrently (sild-T0) or 15 days (sild-T15) after the start of CPZ. Control animals received pure food and water. The cerebella of the mice were dissected and processed for immunohistochemistry, immunofluorescence (frozen), western blotting and dosage of cytokines (Elisa). CPZ induced an increase in the expression of GFAP, IL-1ß TNF-α, total NFkB and inactive AMPK, and prompt microglia activation. CPZ also induced a reduction of IKßα. The administration of sildenafil reduced the expression of the pro-inflammatory cytokines IL-1ß and TNF-α and increased the expression of the anti-inflammatory cytokine IL-10. In addition, the administration of sildenafil reduced expression of GFAP, NFkB, inactive AMPK and iNOS, and increased IKßα. Interestingly, sildenafil also reduced levels of NGF. In general, the sild-T0 group was more effective than sild-T15 in improving clinical status and promoting the control of neuroinflammation. The present study offers evidence that sildenafil has anti-inflammatory and neuroprotective effects, which are probably achieved through modulation of AMPK-IKßα-NFκB signaling. In addition, eNOS may play a role in the sildenafil neuroprotective mechanism, contributing to the activation of AMPK. However, other pathways such as MAPK-NFkB and the downstream proteins AMPK (AMPK-SIRT1-NFκB) should also be further investigated. An understanding of these mechanisms of action is critical for the clinical use of sildenafil to control neuroinflammation in neurodegenerative diseases such as MS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Citrato de Sildenafila/uso terapêutico , Animais , Quelantes/toxicidade , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...