Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174670, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002600

RESUMO

Sugarcane straw removal for bioenergy production will increase substantially in the next years, but this may deplete soil organic carbon (SOC) and exacerbate greenhouse gas (GHG) emissions. These aspects are not consistently approached in bioenergy life cycle assessment (LCA). Using SOC modeling and LCA approach, this study addressed the life cycle GHG balance from sugarcane agroindustry in different scenarios of straw removal, considering the potential SOC changes associated with straw management in sugarcane-cultivated soils in Brazil. Long-term simulations showed SOC losses of up to -0.5 Mg ha-1 yr-1 upon complete straw removal, whereas the moderate removal had little effects on SOC and the maintenance of all straw in the field increased SOC accumulation by up to 0.4 Mg ha-1 yr-1. Our analysis suggests that accounting for SOC changes in LCA calculations could lower the net GHG benefits of straw-derived bioenergy, whose emissions intensity varied according to soil type. Overall, SOC depletion induced by complete straw removal increased the life cycle GHG emissions of straw-derived bioenergy by 26 % (3.9 g CO2eq MJ-1) compared to a scenario without taking SOC changes into account. Straw removal for cellulosic ethanol could be effective for mitigating GHG emissions relative to gasoline, but it was not advantageous for bioelectricity generation depending on the energy sources that are displaced. Therefore, straw-induced change of SOC stocks is a critical factor to model life cycle GHG emissions of straw-derived bioenergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...