Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(39): 91344-91354, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477812

RESUMO

The United Nations Sustainable Development Goals (SDGs) are imperative from the point of view of protecting the environment by employing sustainable options. Considerable research has been carried out in the transportation sector to meet this objective. Here, the influence is assessed of epoxidised gingelly oil methyl ester biolubricant with alumina (Al2O3) nanoparticles on the performance and emissions of a single cylinder 0.66-L capacity direct injection compression ignition engine driven by gingelly B20 biodiesel. Engine tests are carried out with gingelly B20 biodiesel as a fuel, and gingelly methyl ester (B100), epoxidised gingelly methyl ester (B100E), and epoxidised gingelly methyl ester (B100E) mixed with 0.5%, 1.0%, and 1.5% w/w alumina (Al2O3) nanoparticles as the lubricant combinations. The results are compared with baseline B20 biodiesel fuel-mineral lubricant operation. The findings indicate that brake thermal efficiency increases by 8.64% for epoxidised gingelly methyl ester (B100E) with 1.0% w/w alumina (Al2O3) nanoparticle biolubricant in comparison to baseline operation. Considerable reductions in emissions are detected; specifically, reductions of 52.4%, 22.0%, 20.0%, and 34.9%, respectively, are observed for CO, NOx, and HC concentrations and smoke opacity for the abovementioned combination as compared to baseline operation. The present work suggests that further research is merited on green fuel-green lubricant combinations. The findings of this study address the United Nations Sustainable Development Goals (SDGs) 7 and 13.


Assuntos
Gasolina , Nanopartículas Metálicas , Gasolina/análise , Fumaça , Biocombustíveis/análise , Emissões de Veículos/análise , Ésteres , Óxido de Alumínio
2.
Environ Pollut ; 310: 119866, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944781

RESUMO

The use of ethanol blending for gasoline has been found to have a significant effect in reducing emissions without any loss in the performance of a spark ignition engine. However, an increase in the emissions of oxides of nitrogen (NOx) may be seen due to the increased oxygen content in the fuel. On the contrary, emulsifying fuel with hydrogen peroxide (H2O2) has shown a substantial effect in reducing all the emissions, including NOx in a compression ignition (CI) engine. In this study, 10% ethanol is blended with gasoline (E10) and further emulsified with H2O2 up to 1.5%. When compared to neat gasoline, a 4.8% increase in brake thermal efficiency (BTE) is obtained with 10% ethanol and 1.5% H2O2. The corresponding average decrease in the emissions of carbon monoxide (CO), hydrocarbons (HC), and NOx were 80%, 43%, and 17%, respectively. The results of the experimental trials are used to model an artificial neural network (ANN) to derive a relationship between the input factors of ethanol concentration, H2O2 concentration, and engine speeds with the output responses of BTE, CO, HC, and NOx. The ANN models of each response are optimized using a multi-objective particle swarm optimization (PSO) for maximizing BTE and minimizing emissions of CO, HC, and NOx. The PSO results showed that operating the engine at 2000 rpm using ethanol blending between 4 and 6% and H2O2 emulsification of 1.5% are the best optimal conditions.


Assuntos
Gasolina , Peróxido de Hidrogênio , Biocombustíveis , Monóxido de Carbono , Etanol , Hidrocarbonetos , Redes Neurais de Computação , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...