Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 5128(3): 355-383, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101168

RESUMO

DNA barcoding analyses of Phragmatiphila nexa (Hbner, 1808) populations unveiled an unexpected divergence in mtDNA of Italian populations, showing the existence of three allopatric cryptic species. The northernmost BIN is shared with specimens from most other European countries, the southernmost one includes specimens from Basilicata and Calabria regions, and the last BIN includes specimens from Apennines, Sardinia and Corsica. Wing pattern as well as male and female genitalia support the existence of three different species along the Italian peninsula: Phragmatiphila nexa north of the Po River for which we designate a neotype, Phragmatiphila insularis (Turati, 1913), stat. rev. in the Apennines as well as in Sardinia (and Corsica), and Phragmatiphila parenzani sp. n. in the south. The Italian distribution of the genus Phragmatiphila is presented in detail.


Assuntos
Mariposas , Animais , DNA Mitocondrial , Feminino , Genitália Feminina , Genitália Masculina , Insetos , Masculino , Mariposas/genética
2.
Mol Phylogenet Evol ; 161: 107161, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33794395

RESUMO

The noctuid genus Spodoptera currently consists of 31 species with varied host plant breadths, ranging from monophagous and oligophagous non-pest species to polyphagous pests of economic importance. Several of these pest species have become major invaders, colonizing multiple continents outside their native range. Such is the case of the infamous fall armyworm, Spodoptera frugiperda (J.E. Smith), which includes two recognized host strains that have not been treated as separate species. Following its accidental introduction to Africa in 2016, it quickly spread through Africa and Asia to Australia. Given that half the described Spodoptera species cause major crop losses, comparative genomics studies of several Spodoptera species have highlighted major adaptive changes in genetic architecture, possibly relating to their pest status. Several recent population genomics studies conducted on two species enable a more refined understanding of their population structures, migration patterns and invasion processes. Despite growing interest in the genus, the taxonomic status of several Spodoptera species remains unstable and evolutionary studies suffer from the absence of a robust and comprehensive dated phylogenetic framework. We generated mitogenomic data for 14 Spodoptera taxa, which are combined with data from 15 noctuoid outgroups to generate a resolved mitogenomic backbone phylogeny using both concatenation and multi-species coalescent approaches. We combine this backbone with additional mitochondrial and nuclear data to improve our understanding of the evolutionary history of the genus. We also carry out comprehensive dating analyses, which implement three distinct calibration strategies based on either primary or secondary fossil calibrations. Our results provide an updated phylogenetic framework for 28 Spodoptera species, identifying two well-supported ecologically diverse clades that are recovered for the first time. Well-studied larvae in each of these clades are characterized by differences in mandibular shape, with one clade's being more specialized on silica-rich C4 grasses. Interestingly, the inferred timeframe for the genus suggests an earlier origin than previously thought for the genus: about 17-18 million years ago.


Assuntos
Evolução Molecular , Filogenia , Spodoptera/classificação , Spodoptera/genética , Animais , Interações Hospedeiro-Parasita , Filogeografia
3.
Nat Commun ; 9(1): 5089, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504767

RESUMO

The rise of Neogene C4 grasslands is one of the most drastic changes recently experienced by the biosphere. A central - and widely debated - hypothesis posits that Neogene grasslands acted as a major adaptive zone for herbivore lineages. We test this hypothesis with a novel model system, the Sesamiina stemborer moths and their associated host-grasses. Using a comparative phylogenetic framework integrating paleoenvironmental proxies we recover a negative correlation between the evolutionary trajectories of insects and plants. Our results show that paleoenvironmental changes generated opposing macroevolutionary dynamics in this insect-plant system and call into question the role of grasslands as a universal adaptive cradle. This study illustrates the importance of implementing environmental proxies in diversification analyses to disentangle the relative impacts of biotic and abiotic drivers of macroevolutionary dynamics.


Assuntos
Evolução Biológica , Pradaria , Insetos/fisiologia , Poaceae/fisiologia , Animais , Ecossistema , Herbivoria/classificação , Herbivoria/fisiologia , Insetos/classificação , Filogenia , Poaceae/classificação
4.
PLoS One ; 10(4): e0122407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853412

RESUMO

Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities.


Assuntos
Especiação Genética , Filogenia , Spodoptera/genética , Animais , Evolução Molecular , Dados de Sequência Molecular
5.
PLoS One ; 7(7): e41377, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22859979

RESUMO

Between the late Oligocene and the early Miocene, climatic changes have shattered the faunal and floral communities and drove the apparition of new ecological niches. Grassland biomes began to supplant forestlands, thus favouring a large-scale ecosystem turnover. The independent adaptive radiations of several mammal lineages through the evolution of key innovations are classic examples of these changes. However, little is known concerning the evolutionary history of other herbivorous groups in relation with this modified environment. It is especially the case in phytophagous insect communities, which have been rarely studied in this context despite their ecological importance. Here, we investigate the phylogenetic and evolutionary patterns of grass-specialist moths from the species-rich tribe Apameini (Lepidoptera, Noctuidae). The molecular dating analyses carried out over the corresponding phylogenetic framework reveal an origin around 29 million years ago for the Apameini. Ancestral state reconstructions indicate (i) a potential Palaearctic origin of the tribe Apameini associated with a major dispersal event in Afrotropics for the subtribe Sesamiina; (ii) a recent colonization from Palaearctic of the New World and Oriental regions by several independent lineages; and (iii) an ancestral association of the tribe Apameini over grasses (Poaceae). Diversification analyses indicate that diversification rates have not remained constant during the evolution of the group, as underlined by a significant shift in diversification rates during the early Miocene. Interestingly, this age estimate is congruent with the development of grasslands at this time. Rather than clade ages, variations in diversification rates among genera better explain the current differences in species diversity. Our results underpin a potential adaptive radiation of these phytophagous moths with the family Poaceae in relation with the major environmental shifts that have occurred in the Miocene.


Assuntos
Distribuição Animal , Especiação Genética , Mariposas/genética , Adaptação Biológica , Animais , Teorema de Bayes , Mudança Climática , Ecossistema , Fósseis , Herbivoria , Funções Verossimilhança , Modelos Genéticos , Filogenia , Filogeografia , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...