Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8592, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615153

RESUMO

Multifocal contact lenses (MCLs) are one of the solutions to correct presbyopia, but their adoption is not widespread. To address this situation, visual simulators can be used to refine the adaptation process. This study aims to obtain accurate simulations for a visual simulator (SimVis Gekko; 2EyesVision) of daily soft MCL designs from four manufacturers. In-vitro characterization of these MCLs-several powers and additions- was obtained using NIMO TR-1504. From the averaged relative power profiles across powers, phase maps were reconstructed and the Through-Focus Visual Strehl metric was calculated for each MCL design. The SimVis Gekko simulation corresponding to each MCL design was obtained computationally and bench-validated. Finally, the MCL simulations were clinically validated involving presbyopic patients. The clinical validation results show a good agreement between the SimVis Gekko simulations and the real MCLs for through-focus visual acuity (TF-VA) curves and VA at three real distances. All MCL designs showed a partial correlation higher than 0.90 and a Root Mean Square Error below 0.07 logMAR between the TF-VA of simulations and Real MCLs across subjects. The validity of the simulation approach using SimVis Gekko and in-vitro measurements was confirmed in this study, opening the possibility to accelerate the adaptation of MCLs.


Assuntos
Lentes de Contato Hidrofílicas , Lagartos , Presbiopia , Humanos , Animais , Simulação por Computador , Presbiopia/terapia , Acuidade Visual
2.
Transl Vis Sci Technol ; 12(3): 18, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939712

RESUMO

Purpose: To propose new methods for eye selection in presbyopic monovision corrections. Methods: Twenty subjects with presbyopia performed two standard methods of binary eye dominance identification (sensory with +1.50 diopters [D ]and +0.50 D and sighting with "hole-in-the-card") and two psychophysical methods of perceived visual quality: (1) the Preferential test, 26 natural images were judged with the near addition in one eye or in the other in a 2-interval forced-choice task, and the Eye Dominance Strength (EDS) defined as the proportion of trials where one monovision is preferred over the other; (2) the Multifocal Acceptance Score (MAS-2EV) test, the perceived quality of a natural images set (for 2 luminance levels and distances) was scored and EDS defined as the score difference between monovision in one eye or the other. Left-eye and right-eye dominance are indicated with negative and positive values, respectively. Tests were performed using a Simultaneous Vision Simulator, which allows rapid changes between corrections. Results: Standard sensory and sighting dominances matched in only 55% of subjects. The Preferential EDS (ranging from -0.7 to +0.9) and MAS-2EV EDS (ranging from -0.6 to +0.4) were highly correlated. Selecting the eye for far in monovision with the MAS-2EV, sensory, or sighting tests would have resulted in 79%, 64%, and 43% success considering the Preferential test as the gold standard. Conclusions: Tests based on perceptual preference allow selection of the preferred monovision correction and measurement of dominance strength. Translational Relevance: The binocular visual simulator allows efficient implementation of eye preference tests for monovision in clinical use.


Assuntos
Dominância Ocular , Visão Monocular , Humanos , Acuidade Visual , Visão Ocular , Testes Visuais
3.
Sci Rep ; 13(1): 1575, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709218

RESUMO

Most tunable lenses (TLs) are affected by deviations in optical power induced by external temperature changes or due to internal heating while in use. This study proposes: (1) An experimental characterization method to evaluate the magnitude of the optical power deviations due to internal temperature shifts; (2) three different mathematical models (experimental, polynomial, and optimized) to describe the response of the lens with temperature; (3) predictions of the internal temperature shifts while using the lens in time frames of minutes, seconds, and milliseconds and; (4) a real time optical power compensation tool based on the implementation of the models on a custom voltage electronic driver. The compensation methods were successfully applied to two TL samples in static and dynamic experiments and in hysteresis cycles. After 40 min at a static nominal power of 5 diopters (dpt), the internal temperature exponentially increased by 17 °C, producing an optical power deviation of 1.0 dpt (1.5 dpt when the lens cools down), representing a 20% distortion for heating and 30% for cooling. Modelling and compensation reduced the deviations to 0.2 dpt when heating (0.35 dpt when cooling) and the distortions to 4% and 7%. Similar levels of improvement were obtained in dynamic and hysteresis experiments. Compensation reduced temperature effects by more than 75%, representing a significant improvement in the performance of the lens.

4.
J Cataract Refract Surg ; 49(1): 34-43, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971215

RESUMO

PURPOSE: To study the viability of visual simulation of presbyopic correction in patients with cataract and the effect and impact of the cataract on the perceived visual quality of the different simulated presbyopic corrections preoperatively and postoperatively. SETTING: San Carlos Clinical Hospital, Madrid, Spain. DESIGN: Observational, noninterventional, pilot study, early feasibility of the device being studied. METHODS: Cataract patients were tested preoperatively (n = 24) and postoperatively (n = 15) after bilateral implantation of monofocal intraocular lenses (IOLs). The degree of cataract was evaluated objectively with the objective scatter index (OSI). Visual acuity (VA) and perceived visual quality of natural scene images (Multifocal Acceptance Score) were measured before and after cataract surgery at far (4 m), intermediate (64 cm) and near distance (40 cm) with 4 binocular presbyopic corrections (single vision, bifocal, monovision and modified-monovision) simulated with a binocular Simultaneous Vision simulator based on temporal multiplexing. RESULTS: VA was significantly correlated with OSI ( r = -0.71, P < .0005), although the visual degradation at far for each correction was constant and not correlated with OSI. The visual benefit at near distance provided by the presbyopic correction was noticeable (23.3% ± 27.6% across corrections) for OSI <5. The individual perceptual scores were highly correlated preoperatively vs postoperatively ( r = 0.64, P < .0005) for all corrections and distances. CONCLUSIONS: Visual simulations of IOLs are an excellent tool to explore prospective postoperative vision. The high correlation in the perceptual scores pre- and post-cataract surgery demonstrates that SimVis Gekko can be used in cataractous patients to guide the selection of the optimal correction for a patient.


Assuntos
Opacificação da Cápsula , Lentes Intraoculares , Humanos , Implante de Lente Intraocular/efeitos adversos , Estudos Prospectivos , Projetos Piloto , Opacificação da Cápsula/etiologia , Desenho de Prótese
5.
Appl Opt ; 61(27): 8091-8099, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255931

RESUMO

Tunable lenses (TLs) are optical devices that can change their optical power in response to an electrical signal. In many applications, they are often pushed to or beyond their temporal limits. Fast periodic and/or abrupt variations of the optical power induce undesired distortions in their transient response and produce a decrease in their performance. A low-cost focimetry system, along with a custom closed-loop iterative optimization algorithm, was developed to (1) characterize a TL's response at high speed and (2) optimize their performance in realistic TL working conditions. A significant lens performance improvement was found in about 23 iterations with a decrease in the area under the error curve and an improved effective time. Applying the closed-loop optimization algorithm in a depth scanning experiment enhanced the image quality. Quantitatively, the image quality was evaluated using the structural similarity index metric that improves in individual frames, on average, from 0.345 to 0.895.

6.
Cont Lens Anterior Eye ; 45(6): 101716, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35606298

RESUMO

PURPOSE: The purpose of this study is to compare the binocular visual perception of participants wearing multifocal contact lenses and these same lens designs viewed through a temporal multiplexing visual simulator. METHODS: Visual performance and perceived visual quality at various distances were obtained in 37 participants wearing soft M-CLs and through the SimVis Gekko programmed with the same lenses. In a pilot study (n = 10) visual performance was measured in terms of LogMAR visual acuity (VA) at far (4 m), intermediate (64 cm) and near (40 cm) distances and through-focus VA (TFVA) curves with the simulated M-CLs. In the follow-up study (n = 27), LogMAR VA at far, intermediate and near distances were measured both with the actual and simulated M-CLs. Perceived visual quality was measured in both studies using the Multifocal Acceptance Score (MAS-2EV), and a Participants Reported Outcomes Vision questionnaire. Differences between the metrics obtained with simulated and actual lenses were obtained. RESULTS: Both actual and simulated M-CLs increased depth-of-focus by a similar amount. Mean LogMAR VA differences with actual and simulated M-CLs ranged between 4 and 6 letters (0.08 ± 0.01, 0.12 ± 0.01 and 0.10 ± 0.01, for far, intermediate and near distances, respectively). MAS-2EV average score differences with actual and simulated M-CLs ranged between -1.00 and + 4.25. Average MAS-2EV scores were not correlated significantly with VA. However, MAS-2EV (average and individual scores) were highly correlated to visual quality questionnaire responses (p < 0.005). CONCLUSIONS: A simultaneous vision simulator accurately represented vision with M-CLs both VA at various distances and perceived visual quality, as measured in a clinical setting. The MAS-2EV metric accurately captured participant reported outcomes of standard vision questionnaires. The combination of SimVis Gekko and MAS-2EV has the potential to largely reduce chair time in M-CLs fitting.


Assuntos
Lentes de Contato , Presbiopia , Humanos , Presbiopia/terapia , Sensibilidades de Contraste , Seguimentos , Projetos Piloto , Visão Binocular/fisiologia
7.
Sci Rep ; 11(1): 1397, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446794

RESUMO

We present a new metric (Multifocal Acceptance Score, MAS-2EV) to evaluate vision with presbyopic corrections. The MAS-2EV is based on a set of images representing natural visual scenes at day and night conditions projected in far and near displays, and a near stereo target. Subjects view and score the images through different binocular corrections (monofocal corrections at far; bifocal corrections; monovision and modified monovision) administered with soft contact lenses (in cyclopleged young subjects) or with a binocular simultaneous vision simulator (in presbyopic and cyclopleged young subjects). MAS-2EV scores are visually represented in the form of polygons, and quantified using different metrics: overall visual quality, visual degradation at far, visual benefit at near, near stereo benefit, visual imbalance near-far, overall visual imbalance and a combined overall performance metric. We have found that the MAS-2EV has sufficient repeatability and sensitivity to allow differentiation across corrections with only two repetitions, and the duration of the psychophysical task (3 min for subject/condition/correction) makes it useable in the clinic. We found that in most subjects binocular bifocal corrections produce the lowest visual imbalance, and the highest near stereo benefit. 46.67% of the subjects ranked binocular bifocal corrections first, and 46.67% of the subjects ranked monovision first. MAS-2EV, particularly in combination with visual simulators, can be applied to select prospective presbyopic corrections in patients prior to contact lens fitting or intraocular lens implantation.

8.
Opt Express ; 27(3): 2085-2100, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732252

RESUMO

Tunable lenses are becoming ubiquitous, in applications including microscopy, optical coherence tomography, computer vision, quality control, and presbyopic corrections. Many applications require an accurate control of the optical power of the lens in response to a time-dependent input waveform. We present a fast focimeter (3.8 KHz) to characterize the dynamic response of tunable lenses, which was demonstrated on different lens models. We found that the temporal response is repetitive and linear, which allowed the development of a robust compensation strategy based on the optimization of the input wave, using a linear time-invariant model. To our knowledge, this work presents the first procedure for a direct characterization of the transient response of tunable lenses and for compensation of their temporal distortions, and broadens the potential of tunable lenses also in high-speed applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...