Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JOR Spine ; 6(3): e1279, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780829

RESUMO

Background: A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims: This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods: First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results: This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion: Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion: Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.

2.
JOR Spine ; 6(1): e1238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994456

RESUMO

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

3.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451894

RESUMO

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

4.
JOR Spine ; 5(3): e1216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36203865

RESUMO

Back pain is a global epidemiological and socioeconomic problem often associated with intervertebral disc degeneration; a condition believed to initiate in the nucleus pulposus (NP). There is considerable interest in developing early therapeutic interventions to target the NP and halt degeneration. Rat caudal models of disc degeneration have demonstrated significant utility in the study of disease progression and its impact on tissue structure, composition, and mechanical performance. One significant advantage of the caudal model is the ease of access and high throughput nature. However, considerable variability exists across the literature in terms of experimental setup and parameters. The objective of this article is to aid researchers in the design and development of caudal puncture models by providing details and insight into the most reported experimental parameters. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed to screen the existing literature and 80 manuscripts met the inclusion criteria. Disc geometry, surgical approaches, effect of needle gauge size to induce degeneration, therapeutic volume, outcome measures, and associated limitations are considered and discussed, and a range of recommendations based on different research questions are presented.

5.
Biomaterials ; 277: 121113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492582

RESUMO

Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Alginatos , Humanos , Hidrogéis , Integrinas , Peptídeos , Fenótipo , Sindecanas
6.
Acta Biomater ; 131: 117-127, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229105

RESUMO

Degeneration of the intervertebral disc (IVD) is associated with significant biochemical and morphological changes that include a loss of disc height, decreased water content and decreased cellularity. Cell delivery has been widely explored as a strategy to supplement the nucleus pulposus (NP) region of the degenerated IVD in both pre-clinical and clinical trials, using progenitor or primary cell sources. We previously demonstrated an ability for a polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP cells to undergo a shift from a degenerative fibroblast-like state to a juvenile-like NP phenotype. In the current study, we evaluate the ability for this peptide-functionalized hydrogel to serve as a bioactive system for cell delivery, retention and preservation of a biosynthetic phenotype for primary IVD cells delivered to the rat caudal disc in an anular puncture degeneration model. Our data suggest that encapsulation of adult degenerative human NP cells in a stiff formulation of the hydrogel functionalized with laminin-mimetic peptides IKVAV and AG73 can promote cell viability and increased biosynthetic activity for this population in 3D culture in vitro. Delivery of the peptide-functionalized biomaterial with primary rat cells to the degenerated IVD supported NP cell retention and NP-specific protein expression in vivo, and promoted improved disc height index (DHI) values and endplate organization compared to untreated degenerated controls. The results of this study suggest the physical cues of this peptide-functionalized hydrogel can serve as a supportive carrier for cell delivery to the IVD. STATEMENT OF SIGNIFICANCE: Cell delivery into the degenerative intervertebral disc has been widely explored as a strategy to supplement the nucleus pulposus. The current work seeks to employ a biomaterial functionalized with laminin-mimetic peptides as a cell delivery scaffold in order to improve cell retention rates within the intradiscal space, while providing the delivered cells with biomimetic cues in order to promote phenotypic expression and increase biosynthetic activity. The use of the in situ crosslinkable material integrated with the native IVD, presenting a system with adequate physical properties to support a degenerative disc.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Hidrogéis/farmacologia , Degeneração do Disco Intervertebral/terapia , Peptídeos/farmacologia , Polímeros , Ratos
7.
J Tissue Eng ; 12: 20417314211021220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188794

RESUMO

The nucleus pulposus (NP) of the intervertebral disc plays a critical role in distributing mechanical loads to the axial skeleton. Alterations in NP cells and, consequently, NP matrix are some of the earliest changes in the development of disc degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in promoting a healthy phenotype for human NP cells from degenerated tissue. Here we investigate the use of laminin-mimetic peptides presented individually or in combination on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic peptides that results in cell signaling downstream of integrin and syndecan binding. Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell behaviors that mimic that of full-length laminins. These results identify a set of peptides that can be used to regulate NP cell behaviors toward a regenerative engineering strategy.

8.
Ann Biomed Eng ; 49(3): 1110-1118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33479787

RESUMO

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.


Assuntos
Gânglios Espinais/fisiologia , Neurônios/fisiologia , Animais , Cálcio/fisiologia , Estimulação Elétrica , Camundongos Transgênicos , Microscopia Confocal , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia
9.
Biomaterials ; 250: 120057, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32361392

RESUMO

Cells of the nucleus pulposus have been observed to undergo a shift from their notochordal-like juvenile phenotype to a more fibroblast-like state with age and maturation. It has been demonstrated that culture of degenerative adult human nucleus pulposus cells upon soft (<1 kPa) full length laminin-containing hydrogel substrates promotes increased levels of a panel of markers associated with the juvenile nucleus pulposus cell phenotype. In the current work, we observed an ability to use soft polymeric substrates functionalized with short laminin-mimetic peptide sequences to recapitulate the behaviors elicited by soft, full-length laminin containing materials. Furthermore, our work suggests an ability to mimic features of soft systems through control of peptide density upon stiffer substrates. Specifically, results suggest that stiffer polymer-peptide hydrogel substrates can be used to promote the expression of a more juvenile-like phenotype for cells of the nucleus pulposus by reducing adhesive ligand presentation. Here we show how polymer stiffness combined with adhesive ligand presentation can be controlled to be supportive of nucleus pulposus cell phenotype and biosynthesis.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Adesivos , Adulto , Humanos , Laminina , Ligantes , Fenótipo
10.
FASEB J ; 33(12): 14022-14035, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638828

RESUMO

Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento , Fenômenos Biomecânicos , Células Cultivadas , Citoesqueleto , Regulação da Expressão Gênica , Humanos , Hidrogéis , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Interferência de RNA , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
11.
Langmuir ; 31(49): 13402-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26606238

RESUMO

Controlled delivery of bioactive signaling molecules and drugs is essential for the development of the next generation of tissue regeneration scaffolds. However, these molecules must be delivered from a nonfouling platform, so that the therapeutic role is not masked by the naturally occurring foreign body response. Therefore, the purpose of this study is to characterize the release profiles of three pseudodrug molecules from a nonfouling polyampholyte hydrogel to gain insight into the potential for this platform to serve as a tissue regeneration scaffold. Hydrogels composed of equimolar concentrations of [2-(acryloyloxy)ethyl] trimethylammonium chloride (TMA) and 2-carboxyethyl acrylate (CAA) monomers were synthesized in the presence of caffeine, methylene blue, or metanil yellow. Then the release of these three molecules was tracked as a function of the hydrogel cross-linker density, the solution pH, and the solution ionic strength. The results suggest that the release of the neutral caffeine molecule is dictated by diffusion alone, while the release of the two charged pseudodrug molecules are controlled by their interactions with the charged regions of the TMA and CAA monomer subunits. These interactions are clearly impacted by solution pH and ionic strength leading to clear changes in the rate of release and extent of release for metanil yellow and methylene blue. Additionally, an enzyme-linked immunosorbent assay was used to confirm that the TMA:CAA hydrogels retain their nonfouling characteristics following the release of the pseudodrug molecules. When these results are combined with the literature related to TMA:CAA hydrogels, it is concluded that this system represents a promising multifunctional platform for both short-term and long-term delivery of bioactive molecules for tissue regeneration.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Polímeros/química , Acrilatos/química , Incrustação Biológica , Soluções Tampão , Portadores de Fármacos/síntese química , Concentração de Íons de Hidrogênio , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...