Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 47(Pt B): 192-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449401

RESUMO

It is well known that events which occur in early life exert a significant influence on brain development, what can be reflected throughout adulthood. This study was carried out in order to assess the influence of neonatal tactile stimulation (TS) on behavioral and morphological responses related to depression-like and anxiety-like behaviors, assessed following the administration of sertraline (SERT), a selective serotonin re-uptake inhibitor (SSRI). Male pups were submitted to daily TS, from postnatal day 8 (PND8) to postnatal day 14 (PND14), for 10 min every day. On PND50, adult animals were submitted to forced swimming training (15 min). On PND51, half of each experimental group (UH and TS) received a single sub-therapeutic dose of sertraline (SER, 0.3mg/kg body weight, i.p.) or its vehicle (C, control group). Thirty minutes after injection, depression-like behaviors were quantified in forced swimming test (FST, for 5 min). On the following day, anxiety-like behaviors were assessed in elevated plus maze (EPM), followed by biochemical assessments. TS per se increased swimming time, decreasing immobility time in FST. Besides, TS per se was able to increase frequency of head dipping and time spent in the open arms of EPM, resulting in decreased anxiety index. In addition, groups exposed to TS showed decreased plasma levels of corticosterone per se. Interestingly, while TS exposure significantly potentiated the antidepressant activity of a subtherapeutic dose of SERT, this drug was able to exacerbate TS-induced anxiolytic activity, as observed in FST and EPM, respectively. Decreased plasma levels of both corticosterone and cortisol in animals exposed to TS and treated with SERT are able to confirm the interesting interaction between this neonatal handling and the antidepressant drug. From our results, we conclude that neonatal TS is able to exert beneficial influence on the ability to cope with stressful situations in adulthood, preventing depression and favorably modulating the action of antidepressant drugs.


Assuntos
Ansiedade/terapia , Depressão/terapia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sertralina/uso terapêutico , Tato , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Modelos Animais de Doenças , Feminino , Hidrocortisona/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estimulação Física , Gravidez , Ratos , Ratos Wistar , Natação/psicologia
2.
Brain Res Bull ; 118: 78-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26393778

RESUMO

PURPOSE: To evaluate the toxicity of chronic consumption of processed foods that are rich in trans fat on the lipid composition of brain membranes, as well as its functional repercussions. METHODS: A second generation of male rats born from mothers and grandmothers supplemented with soybean oil (SOC, an isocaloric control group) or hydrogenated vegetable fat (HVF, rich in TFA) (3g/kg; p.o.) were kept under oral treatment until 90 days of age, when they were exposed to an AMPH-induced model of mania. RESULTS: The HVF group presented 0.38% of TFA incorporation in the striatum, affecting Na(+)/K(+) ATPase activity, which was decreased per se and following AMPH-exposure. The HVF group also showed increased protein carbonyl (PC) and brain-derived neurotrophic factor (BDNF) mRNA levels after AMPH administration, while these oxidative and molecular changes were not observed in the other experimental groups. Additionally, a negative correlation between striatal Na(+)/K(+) ATPase activity and PC levels (r(2)=0.49) was observed. CONCLUSION: The prolonged consumption of trans fat allows TFA incorporation and increases striatal oxidative status, thus impairing the functionality of Na(+)/K(+)-ATPase and affecting molecular targets as BDNF mRNA. We hypothesized that the chronic intake of processed foods (rich in TFA) facilitates the development of neuropsychiatric diseases, particularly bipolar disorder.


Assuntos
Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/biossíntese , ATPase Trocadora de Sódio-Potássio/metabolismo , Ácidos Graxos trans/toxicidade , Anfetamina/farmacologia , Animais , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/enzimologia , Transtorno Bipolar/genética , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Expressão Gênica , Masculino , Membranas/metabolismo , Atividade Motora/efeitos dos fármacos , Carbonilação Proteica , RNA Mensageiro/genética , Ratos , Óleo de Soja/administração & dosagem , Ácidos Graxos trans/administração & dosagem , Ácidos Graxos trans/metabolismo
3.
Biol Trace Elem Res ; 166(2): 163-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25686766

RESUMO

Reserpine administration results in a predictable animal model of orofacial dyskinesia (OD) that has been largely used to access movement disturbances related to extrapyramidal oxidative damage. Here, OD was acutely induced by reserpine (two doses of 0.7 mg/kg subcutaneous (s.c.)), every other day for 3 days), which was administered after (experiment 1) and before (experiment 2) magnesium (Mg) supplementation (40 mg/kg/mL, peroral (p.o.)). In experiment 1, Mg was administered for 28 days before reserpine treatment, while in experiment 2, it was initiated 24 h after the last reserpine administration and was maintained for 10 consecutive days. Experiment 1 (prevention) showed that Mg supplementation was able to prevent reserpine-induced OD and catalepsy development. Mg was also able to prevent reactive species (RS) generation, thus preventing increase of protein carbonyl (PC) levels in both cortex and substantia nigra, but not in striatum. Experiment 2 (reversion) showed that Mg was able to decrease OD and catalepsy at all times assessed. In addition, Mg was able to decrease RS generation, with lower levels of PC in both cortex and striatum, but not in substantia nigra. These outcomes indicate that Mg is an important metal that should be present in the diet, since its intake is able to prevent and minimize the development of movement disorders closely related to oxidative damage in the extrapyramidal brain areas, such as OD.


Assuntos
Encéfalo/metabolismo , Magnésio/farmacologia , Magnésio/uso terapêutico , Transtornos dos Movimentos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Transtornos dos Movimentos/etiologia , Ratos , Ratos Wistar , Reserpina/toxicidade
4.
Hippocampus ; 25(5): 556-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25394793

RESUMO

Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2) = 0.53; P = 0.000/r(2) = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2) = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Assuntos
Transtorno Bipolar/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Ácidos Graxos trans/toxicidade , Animais , Transtorno Bipolar/psicologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Óleos de Peixe/toxicidade , Lactação , Masculino , Transtornos da Memória/metabolismo , Gravidez , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Óleo de Soja/toxicidade , Produtos Vegetais/toxicidade
5.
Pharmacol Biochem Behav ; 110: 58-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23769696

RESUMO

The current Western diet often provides considerable amounts of saturated and trans fatty acids (TFA), whose incorporation into neuronal membranes has been implicated in changes of brain neurochemical functions. Such influence has caused concerns due to precipitation of neuropsychiatric disorders, whose data are still unclear. Here we evaluated the influence of different fats on preference parameters for amphetamine (AMPH): adolescent rats were orally supplemented with soybean oil (SO, rich in n-6 FA, which was considered an isocaloric control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in saturated and trans FA) from weaning, which were born of dams supplemented with the same fat from pregnancy and lactation. AMPH preference, anxiety-like symptoms and locomotor index were evaluated in conditioned place preference (CPP), elevated plus maze (EPM) and open-field (OF), respectively, while brain oxidative status was determined in cortex, striatum and hippocampus. HVF increased AMPH-CPP and was associated with withdrawal signs, as observed by increased anxiety-like symptoms. Moreover, SO and FO were not associated with AMPH preference, but only FO-supplemented rats did not show any anxiety-like symptoms or increased locomotion. FO supplementation was related to lower oxidative damages to proteins and increased CAT activity in striatum and hippocampus, as well as increased GSH levels in blood, while HVF was related to increased oxidative status. In conclusion, our study showed the harmful influence of TFA on AMPH-CPP and drug craving symptoms, which can be related to dopaminergic neurotransmission.


Assuntos
Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos trans/farmacologia , Animais , Condicionamento Clássico , Feminino , Ratos , Ratos Wistar
6.
Exp Toxicol Pathol ; 65(1-2): 165-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21924598

RESUMO

The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption.


Assuntos
Antioxidantes/uso terapêutico , Carya/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Fígado/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Eritrócitos/diagnóstico por imagem , Eritrócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Testes de Função Hepática , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nozes/química , Picratos/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/química , Ultrassonografia
7.
Brain Res ; 1474: 50-9, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22898153

RESUMO

In this study we evaluated the influence of neonatal tactile stimulation (TS) on behavioral and biochemical effects related to a low dose of diazepam (DZP) in adult rats. Male pups of Wistar rats were handled (TS) daily from PND1 to PND21 for 10 min, while unhandled (UH) rats were not touched. In adulthood, half the animals of each group received a single administration of diazepam (0.25mg/kg body weight i.p.) or vehicle and then were submitted to behavioral and biochemical evaluations. In the TS group, DZP administration reduced anxiety-like symptoms in different behavioral paradigms (elevated plus maze, EPM; staircase and open-field and defensive burying) and increased exploratory behavior. These findings show that neonatal TS increased DZP pharmacological responses in adulthood compared to neonatally UH animals, as observed by reduced anxiety-like symptoms and lower levels of plasma cortisol. TS also changed plasma levels of antioxidant defenses such as vitamin C and glutathione peroxidase, whose increase may be involved in lower oxidative damages to proteins in cortex, subthalamic region and hippocampus of these animals. Here we are showing for the first time that neonatal TS is able to change responsiveness to benzodiazepine drugs in adulthood and provides better pharmacological responses in novel situations of stress.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/fisiopatologia , Diazepam/farmacologia , Estimulação Física/métodos , Tato/fisiologia , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico
8.
Behav Brain Res ; 221(1): 13-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356248

RESUMO

Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal.


Assuntos
Doenças dos Gânglios da Base/tratamento farmacológico , Doenças dos Gânglios da Base/prevenção & controle , Carya/química , Modelos Animais de Doenças , Nozes/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Haloperidol , Masculino , Transtornos dos Movimentos/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Reserpina
9.
Pharmacol Biochem Behav ; 97(3): 560-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21078338

RESUMO

In the last decades, foods rich in omega-3 (ω-3) fatty acids (FA) have been replaced by omega-6 (ω-6) and trans FA, which are found in processed foods. The influence of ω-6 (soybean oil--SO), trans (hydrogenated vegetable fat--HVF) and ω-3 (fish oil--FO) fatty acids on locomotor and oxidative stress (OS) parameters were studied in an animal model of mania. Rats orally fed with SO, HVF and FO for 8 weeks received daily injections of amphetamine (AMPH--4 mg/kg/mL-ip) for the last week of oral supplementation. HVF induced hyperactivity, increased the protein carbonyl levels in the cortex and decreased the mitochondrial viability in cortex and striatum. AMPH-treatment increased the locomotion and decreased the mitochondrial viability in all groups, but its neurotoxicity was higher in the HVF group. Similarly, AMPH administration increased the protein carbonyl levels in striatum and cortex of HVF-supplemented rats. AMPH reduced the vitamin-C plasmatic levels of SO and HVF-fed rats, whereas no change was observed in the FO group. Our findings suggest that trans fatty acids increased the oxidative damage per se and exacerbated the AMPH-induced effects. The impact of trans fatty acids consumption on neuronal diseases and its consequences in brain functions must be further evaluated.


Assuntos
Anfetaminas/farmacologia , Transtorno Bipolar/induzido quimicamente , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Anfetaminas/administração & dosagem , Anfetaminas/efeitos adversos , Animais , Ácido Ascórbico/sangue , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Sinergismo Farmacológico , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-6/efeitos adversos , Locomoção/efeitos dos fármacos , Ratos
10.
Eur J Pharm Biopharm ; 77(2): 332-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21168486

RESUMO

Haloperidol is an antipsychotic drug associated with the development of movement disorders. We evaluated the effect of its nanoencapsulation on its pharmacological activity and motor side effects. Haloperidol-loaded polysorbate-coated nanocapsules (H-NC) showed nanometric size, negative zeta potential and low polydispersity indices and high encapsulation efficiency (>95%). Rats received a single dose of H-NC (0.2mg/kg ip) and four doses of D,L-amphetamine, AMPH (8.0mg/kg ip), injected every 3h (0, 3, 6 and 9h). The AMPH-induced stereotyped movements were quantified in the intervals of 15 min after each of four doses of AMPH, demonstrating greater pharmacological efficacy of the H-NC over free haloperidol (FH). The acute motor side effects were evaluated 1h after a single dose of H-NC or its free solution (0.2mg/kg ip). The group treated with H-NC presented lower extrapyramidal effects (catalepsy and oral dyskinesia) than those treated with FH. In the last experimental set, rats sub-chronically treated with a daily dose of H-NC (0.2mg/kg ip) for 28 days showed a lower incidence of extrapyramidal effects than those treated with the free drug (0.2mg/kg ip). Our findings showed the potential of using H-NC in the development of a nanomedicine aimed at increasing the efficacy of this antipsychotic drug and reducing its side effects.


Assuntos
Antipsicóticos/toxicidade , Antipsicóticos/uso terapêutico , Discinesia Induzida por Medicamentos/etiologia , Haloperidol/toxicidade , Haloperidol/uso terapêutico , Comportamento Estereotipado/efeitos dos fármacos , Anfetamina , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/química , Fenômenos Químicos , Modelos Animais de Doenças , Haloperidol/administração & dosagem , Haloperidol/química , Masculino , Nanocápsulas , Polissorbatos , Ratos , Ratos Wistar , Esquizofrenia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA