Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(7): 110170, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38974964

RESUMO

Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.

2.
J Physiol ; 597(13): 3389-3406, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069810

RESUMO

KEY POINTS: The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT: The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.


Assuntos
Cóclea/metabolismo , Cóclea/fisiologia , Fator de Transcrição GATA3/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiologia , Audição/fisiologia , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Sinapses/metabolismo
3.
EMBO Mol Med ; 8(3): 191-207, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26881968

RESUMO

WBP2 encodes the WW domain-binding protein 2 that acts as a transcriptional coactivator for estrogen receptor α (ESR1) and progesterone receptor (PGR). We reported that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse, as well as in two deaf children, each carrying two different variants in the WBP2 gene. The earliest abnormality we detect in Wbp2-deficient mice is a primary defect at inner hair cell afferent synapses. This study defines a new gene involved in the molecular pathway linking hearing impairment to hormonal signalling and provides new therapeutic targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cóclea/fisiologia , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Audição , Sinapses/fisiologia , Animais , Humanos , Camundongos , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...