Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Kidney Int ; 103(6): 1077-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863444

RESUMO

Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Transcriptoma , Aloenxertos/patologia , Rim/patologia , Nefropatias/patologia , Fibrose , Perfilação da Expressão Gênica
3.
Sci Rep ; 12(1): 9851, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701599

RESUMO

Single nuclei RNA sequencing (snRNA-seq) has evolved as a powerful tool to study complex human diseases. Single cell resolution enables the study of novel cell types, biological processes, cell trajectories, and cell-cell signaling pathways. snRNA-seq largely relies on the dissociation of intact nuclei from human tissues. However, the study of complex tissues using small core biopsies presents many technical challenges. Here, an optimized protocol for single nuclei isolation is presented for frozen and RNAlater preserved human kidney biopsies. The described protocol is fast, low cost, and time effective due to the elimination of cell sorting and ultra-centrifugation. Samples can be processed in 90 min or less. This method is effective for obtaining normal nuclei morphology without signs of structural damage. Using snRNA-seq, 16 distinct kidney cell clusters were recovered from normal and peri-transplant acute kidney injury allograft samples, including immune cell clusters. Quality control measurements demonstrated that these optimizations eliminated cellular debris and allowed for a high yield of high-quality nuclei and RNA for library preparation and sequencing. Cellular disassociation did not induce cellular stress responses, which recapitulated transcriptional patterns associated with standardized methods of nuclei isolation. Future applications of this protocol will allow for thorough investigations of small biobank biopsies, identifying cell-specific injury pathways and driving the discovery of novel diagnostics and therapeutic targets.


Assuntos
Perfilação da Expressão Gênica , RNA Nuclear Pequeno , Biópsia , Perfilação da Expressão Gênica/métodos , Humanos , RNA Nuclear Pequeno/genética , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
4.
Am J Transplant ; 22(11): 2515-2528, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35730259

RESUMO

With the development of novel prognostic tools derived from omics technologies, transplant medicine is entering the era of precision medicine. Currently, there are no established predictive biomarkers for posttransplant kidney function. A total of 270 deceased donor pretransplant kidney biopsies were collected and posttransplant function was prospectively monitored. This study first assessed the utility of pretransplant gene expression profiles in predicting 24-month outcomes in a training set (n = 174). Nearly 600 differentially expressed genes were associated with 24-month graft function. Grafts that progressed to low function at 24 months exhibited upregulated immune responses and downregulated metabolic processes at pretransplantation. Using penalized logistic regression modeling, a 55 gene model area under the receiver operating curve (AUROC) for 24-month graft function was 0.994. Gene expression for a subset of candidate genes was then measured in an independent set of pretransplant biopsies (n = 96) using quantitative polymerase chain reaction. The AUROC when using 13 genes with three donor characteristics (age, race, body mass index) was 0.821. Subsequently, a risk score was calculated using this combination for each patient in the validation cohort, demonstrating the translational feasibility of using gene markers as prognostic tools. These findings support the potential of pretransplant transcriptomic biomarkers as novel instruments for improving posttransplant outcome predictions and associated management.


Assuntos
Transplante de Rim , Transcriptoma , Humanos , Transplante de Rim/efeitos adversos , Doadores de Tecidos , Rim , Biomarcadores/metabolismo
5.
JHEP Rep ; 4(3): 100439, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243279

RESUMO

Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.

7.
Front Transplant ; 1: 988238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38994377

RESUMO

Despite recent advances made in short-term outcomes; minimal improvements have been observed in long-term kidney transplantation outcomes. Due to an imbalance between organ transplant availability and patient waiting list, expanding kidney allograft longevity is a critical need in the field. Prior studies have either focused on early ischemic and immunological conditions affecting kidney allografts (e.g., delayed graft function, acute rejection) or late stage chronic injury when interventions are no longer feasible. However, studies characterizing kidney allografts with normal function by its cellular distribution, cell-cell interactions, and associated molecular pathways are lacking. Herein, we used single nuclei RNA-sequencing to uncover the cellular landscape and transcriptome of the normal kidney allograft. We profiled 40,950 nuclei from seven human kidney biopsies (normal native, N = 3; normal allograft, N = 4); normal allograft protocol biopsies were collected ≥15-months post-transplant. A total of 17 distinct cell clusters were identified with proximal tubules (25.70 and 21.01%), distal tubules (15.22 and 18.20%), and endothelial cells (EC) (4.26 and 9.94%) constituting the major cell populations of normal native and normal allograft kidneys, respectively. A large proportion of cycling cells from normal native kidneys were in G1-phase (43.96%) whereas cells from normal allograft were predominantly in S-phase (32.69%). This result suggests that transcriptional differences between normal native and normal allograft biopsies are dependent on the new host environment, immunosuppression, and injury-affliction. In the normal allograft, EC-specific genes upregulated metabolism, the immune response, and cellular growth, emphasizing their role in maintaining homeostasis during the ongoing alloreactive stress response. Immune cells, including B (2.81%), macrophages (24.96%), monocytes (15.29%), natural killer (NK) (12.83%), neutrophils (8.44%), and T cells (14.41%, were increased in normal allografts despite lack of histological or clinical evidence of acute rejection. Phenotypic characterization of immune cell markers supported lymphocyte activation and proinflammatory cytokines signaling pathways (i.e., IL-15, IL-32). The activation of B, NK, and T cells reveals potential immune cells underlying subclinical inflammation and repair. These single nuclei analyses provide novel insights into kidney and immune cell associated signaling pathways that portray kidney grafts with normal allograft function beyond 2-years post-transplant, revealing a novel perspective in understanding long-term allograft graft survival.

8.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207555

RESUMO

Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5' ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.


Assuntos
Ácidos Nucleicos Livres/sangue , Rejeição de Enxerto/sangue , Nefropatias/sangue , Transplante de Rim , MicroRNAs/sangue , RNA de Transferência de Glicina/sangue , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Th1/metabolismo , Células Th2/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063776

RESUMO

Calcineurin inhibitors are highly efficacious immunosuppressive agents used in pediatric kidney transplantation. However, calcineurin inhibitor nephrotoxicity (CNIT) has been associated with the development of chronic renal allograft dysfunction and decreased graft survival. This study evaluated 37 formalin-fixed paraffin-embedded biopsies from pediatric kidney transplant recipients using gene expression profiling. Normal allograft samples (n = 12) served as negative controls and were compared to biopsies exhibiting CNIT (n = 11). The remaining samples served as positive controls to validate CNIT marker specificity and were characterized by other common causes of graft failure such as acute rejection (n = 7) and interstitial fibrosis/tubular atrophy (n = 7). MiRNA profiles served as the platform for data integration. Oxidative phosphorylation and mitochondrial dysfunction were the top molecular pathways associated with overexpressed genes in CNIT samples. Decreased ATP synthesis was identified as a significant biological function in CNIT, while key toxicology pathways included NRF2-mediated oxidative stress response and increased permeability transition of mitochondria. An integrative analysis demonstrated a panel of 13 significant miRNAs and their 33 CNIT-specific gene targets involved with mitochondrial activity and function. We also identified a candidate panel of miRNAs/genes, which may serve as future molecular markers for CNIT diagnosis as well as potential therapeutic targets.


Assuntos
Biomarcadores/metabolismo , Inibidores de Calcineurina/toxicidade , Sobrevivência de Enxerto/genética , Nefropatias/induzido quimicamente , Nefropatias/genética , Transcriptoma/genética , Biópsia/métodos , Inibidores de Calcineurina/uso terapêutico , Criança , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/genética , Humanos , Imunossupressores/uso terapêutico , Imunossupressores/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Transplante de Rim/efeitos adversos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transplantados , Transplante Homólogo/métodos
10.
Curr Opin Organ Transplant ; 26(1): 1-9, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315766

RESUMO

PURPOSE OF REVIEW: To outline recent discoveries in epigenetic regulatory mechanisms that have potential implications in the development of renal fibrosis following kidney transplantation. RECENT FINDINGS: The characterization of renal fibrosis following kidney transplantation has shown TGFß/Smad signaling to play a major role in the progression to chronic allograft dysfunction. The onset of unregulated proinflammatory pathways are only exacerbated by the decline in regulatory mechanisms lost with progressive patient age and comorbidities such as hypertension and diabetes. However, significant developments in the recognition of epigenetic regulatory markers upstream of aberrant TGFß-signaling has significant clinical potential to provide therapeutic targets for the treatment of renal fibrosis. In addition, discoveries in extracellular vesicles and the characterization of their cargo has laid new framework for the potential to evaluate patient outcomes independent of invasive biopsies. SUMMARY: The current review summarizes the main findings in epigenetic machinery specific to the development of renal fibrosis and highlights therapeutic options that have significant potential to translate into clinical practice.


Assuntos
Fibrose/patologia , Rejeição de Enxerto/patologia , Transplante de Rim/efeitos adversos , Biomarcadores/metabolismo , Epigênese Genética , Humanos , Rim/patologia , Falência Renal Crônica/cirurgia , Fatores de Risco , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...