Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 103(6): 1089-102, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27329943

RESUMO

PREMISE OF THE STUDY: The complex geological and climatic history of the Neotropics has had major implications on the diversification of plant lineages. Chrysobalanaceae is a pantropical family of trees and shrubs with 75% of its 531 species found in the Neotropics, and a time-calibrated phylogeny of this family should shed light on the tempo of diversification in the Neotropical flora. Previously published phylogenetic hypotheses of this family were poorly supported, and its biogeography remains unclear. METHODS: We assembled the complete plastid genome of 51 Chrysobalanaceae species, and increased taxon sampling by Sanger-sequencing of five plastid regions for an additional 88 species. We generated a time-calibrated tree including all 139 Chrsyobalanaceae species and 23 outgroups. We then conducted an ancestral area reconstruction analysis and estimated diversification rates in the family. KEY RESULTS: The tree generated with the plastid genome alignment was almost fully resolved. It supports the polyphyly of Licania and Hirtella. The family has diversified starting around the Eocene-Oligocene transition. An ancestral area reconstruction confirms a Paleotropical origin for Chrysobalanaceae with several transoceanic dispersal events. The main Neotropical clade likely resulted from a single migration event from Africa around 28 mya ago, which subsequently underwent rapid diversification. CONCLUSIONS: Given the diverse ecologies exhibited by extant species, we hypothesize that the rapid diversification of Chrysobalanaceae following the colonization of the Neotropics was triggered by habitat specialization during the complex geological and paleoclimatic history of the Neotropics.


Assuntos
Chrysobalanaceae/classificação , Chrysobalanaceae/genética , Genomas de Plastídeos , Filogeografia , Sequência de Bases , Extinção Biológica , Especiação Genética , Variação Genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
2.
Mol Ecol Resour ; 14(5): 966-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24606032

RESUMO

Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups.


Assuntos
Chrysobalanaceae/classificação , Chrysobalanaceae/genética , Biologia Computacional/métodos , Genoma de Planta , Filogenia , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...