Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(14): 9326-34, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25760695

RESUMO

Iron sulfate compounds have been used extensively to produce iron gall ink, a widely used writing ink in the western world from the 12th-20th centuries. Iron gall ink is well known to corrode writing supports, so detection of iron species is important for the preservation of historical artwork and documents. Iron(ii) sulfate readily changes hydration states and oxidizes in ambient conditions, forming compounds that contribute to this deterioration. In this study, five forms of iron sulfate are characterized by terahertz spectroscopy and solid-state density functional theory (DFT). The results have revealed that the room temperature spectra of FeSO4·7H2O and FeSO4·4H2O are remarkably similar, differing by only a single absorption feature. The identifying terahertz spectra provide an unambiguous metric to determine the relative concentrations of the most common hydrates FeSO4·7H2O and FeSO4·4H2O in a mixed sample. Complete spectral assignments of these species were accomplished by quantum mechanical simulations, with the exception being a single anomalous feature at approximately 40 cm(-1) in the heptahydrate. This peak is believed to be due to polariton absorption, brought about by the particular coordination structure of FeSO4·7H2O that results in a greater charge separation relative to the other iron sulfate crystals.

2.
J Phys Chem A ; 118(43): 10101-8, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25290187

RESUMO

Terahertz (THz) vibrational spectroscopy is a promising tool for the nondestructive and potentially noninvasive characterization of historical objects, which can provide information on the materials used for their production as well as identify and monitor their chemical degradation. Copper sulfate (CuSO4) has drawn interest due to its inclusion in the preparation of iron gall inks found in historical artwork and documents. Copper sulfate rapidly forms hydrates which contribute to the formulation of these ink species and may influence their corrosive nature. In this study, copper sulfate has been studied using a combination of THz time-domain spectroscopy, powder X-ray diffraction (PXRD), and solid-state density functional theory (DFT) in order to better understand the spectral absorbances in the THz region. The results have revealed that the THz spectrum of commercially available "anhydrous" copper sulfate results from the presence of not only the anhydrous form but also the monohydrate (CuSO4·H2O) and trihydrate (CuSO4·3H2O) forms. Complete assignment of the experimental spectrum was achieved through a comparison of density functionals and extensive investigation of the influence of basis set polarization functions on the bonding interactions, lattice parameters, and low-frequency motions in these crystalline solids.


Assuntos
Sulfato de Cobre/química , Teoria Quântica , Cristalização , Espectroscopia Terahertz , Água/química
3.
Analyst ; 138(17): 4859-69, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23817328

RESUMO

The potential of terahertz-time domain spectroscopy (THz-TDS) as a diagnostic tool for studies of inks in historical documents is investigated in this paper. Transmission mode THz-TDS was performed on historically informed model writing and drawing inks. Carbon black, bistre and sepia inks show featureless spectra between 5 and 75 cm(-1) (0.15-2.25 THz); however, their analysis still provided useful information on the interaction of terahertz radiation with amorphous materials. On the other hand, THz-TDS can be used to distinguish different iron gall inks with respect to the amount of iron(II) sulfate contained, as sharp spectral features are observed for inks containing different ratios of iron(II) sulfate to tannic or gallic acid. Additionally, copper sulfate was found to modify the structure of iron(II) precipitate. Furthermore, Principal Component Analysis (PCA) applied to THz-TDS spectra, highlights changes in iron gall inks during thermal degradation, during which a decrease in the sharp spectral bands associated with iron(II) sulfate is observed. ATR-FTIR spectroscopy combined with THz-TDS of dynamically heated ink samples indicate that this phenomenon is due to dehydration of iron(II) sulfate heptahydrate. While this research demonstrates the potential of THz-TDS to improve monitoring of the chemical state of historical documents, the outcomes go beyond the heritage field, as it also helps to develop the theoretical knowledge on interactions between terahertz radiation and matter, particularly in studies of long-range symmetry (polymorphism) in complex molecular structures and the role played by the surrounding matrix, and also indicates the potential of THz-TDS for the optimization of contrast in terahertz imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...