Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 21(7): 1548-1557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36453491

RESUMO

The biogenic amine serotonin modulates pain perception by activating several types of serotonergic receptors, including the 5-HT7 type. These receptors are widely expressed along the pain axis, both peripherally, on primary nociceptors, and centrally, in the spinal cord and the brain. The role of 5-HT7 receptors in modulating pain has been explored in vivo in different models of inflammatory and neuropathic pain. While most studies have reported an antinociceptive effect of 5-HT7 receptor activation, some authors have suggested a pronociceptive action. Differences in pain models, animal species and gender, receptor types, agonists, and route of administration could explain these discrepancies. In this mini-review, some of the main findings concerning the function of 5-HT7 receptors in the pain system have been presented. The expression patterns of the receptors at the different levels of the pain axis, along with the cellular mechanisms involved in their activity, have been described. Alterations in receptor expression and/or function in different pain models and the role of 5-HT7 receptors in controlling pain transmission have also been discussed. Finally, some of the future perspectives in this field have been outlined.


Assuntos
Neuralgia , Serotonina , Animais , Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Receptores de Serotonina/metabolismo , Nociceptividade , Medula Espinal/metabolismo
2.
Front Pain Res (Lausanne) ; 3: 1003068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341153

RESUMO

CR4056 is an imidazoline-2 receptor ligand having potent analgesic activity and synergistic effect with opioids. Very recently it has been found that CR4056 can revert the cognitive impairment in animal models of Alzheimer's disease (AD). Since several lines of evidence highlight the importance of NMDAR modulators in nociceptive signaling and in AD progression, we considered as important to investigate the effects of CR4056 on NMDAR activity. In primary culture of cortical neurons, application of NMDA and glycine elicits a current that is decreased in a dose-dependent fashion by CR4056 (IC50 5.3 ± 0.1 µM). CR4056 antagonism is reversible, not competitive and voltage-independent and it is not blocked by pertussis toxin. CR4056 interacts with the co-agonist glycine site in a competitive way, indeed high glycine concentrations diminish its effect. Fibroblasts expressing different recombinant NMDA receptors are differently modulated by CR4056: the potency and the efficacy of the compound are higher in GluN1- GluN2B than in GluN1-GluN2A containing receptors. In lamina II neurons of spinal cord slices, single stimulation of afferent fibers evokes an NMDA-mediated current that is inhibited by 10 µM CR4056. Repetitive stimulation of the dorsal root at high frequency and high intensity produces a firing activity that is significatively depressed by CR4056. Taken together, our results broad the understanding of the molecular mechanisms of CR4056 analgesic activity, involving the modulation of NMDAR activity. Therefore, we propose that the analgesic action of CR4056 and the neuroprotective effects in AD models may be mediated also by NMDAR inhibition.

3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012312

RESUMO

Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked as a "silent thief", because it usually only becomes undisguised when fractures occur. This implies that the pathological damage occurs earlier than the sensation of pain. The current authors put forward a non-contact injury model in which the chronic overloading of an earlier autologously microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness, non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk factors and a different genetic predisposition, therefore producing different outcomes longitudinally. The current injury model does not intend to challenge any running pathogenic theories or findings, but rather to highlight a principal injury mechanism.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoporose , Corrida , Humanos , Mialgia , Osteoporose/etiologia
4.
Front Mol Neurosci ; 15: 946159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875663

RESUMO

Serotonergic receptors of the 5-HT7 type (5-HT7Rs) are widely expressed in the central nervous system (CNS), where they modulate several functions, such as pain. Behavioral experiments in vivo have shown both anti- and pro-nociceptive actions of 5-HT7Rs, although an analgesic effect seems to be prevalent. In the spinal cord dorsal horn, the mechanisms involved in 5-HT7R-mediated synaptic modulation are still poorly understood, especially those regarding the control of synaptic inhibition. The present study investigated the modulation exerted by 5-HT7Rs on dorsal horn excitatory and inhibitory synaptic circuits, by performing patch-clamp recordings from lamina II neurons in mouse spinal cord slices. Our results show that applying the selective 5-HT7 agonist LP-211 facilitates glutamatergic release by enhancing the frequency of spontaneous postsynaptic currents (sEPSCs) and increasing the peak amplitude of excitatory postsynaptic currents (EPSCs) evoked by dorsal root stimulation. The effects on sEPSCs were still observed in the presence of the 5-HT1A antagonist WAY-100635, while the 5-HT7 antagonist SB-269970 blocked them. LP-211 was also able to increase the release of gamma-aminobutyric acid (GABA) and glycine, as shown by the increase of spontaneous inhibitory currents (sIPSC) frequency and evoked inhibitory postsynaptic currents (IPSC) amplitude. LP-211 was proved to be more effective in potentiating synaptic inhibition as compared to excitation: consistently, 5-HT7R activation significantly enhanced the excitability of tonic firing neurons, mainly corresponding to inhibitory interneurons. Our data bring new insights into the mechanisms of synaptic modulation mediated by 5-HT7Rs in the dorsal horn. Stronger impact on synaptic inhibition supports the hypothesis that these receptors may play an anti-nociceptive role in the spinal cord of naïve animals.

5.
Curr Protoc ; 2(4): e409, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435326

RESUMO

Synaptic modulation and plasticity are key mechanisms underlying pain transmission in the spinal cord and supra-spinal centers. The study and understanding of these phenomena are fundamental to investigating both acute nociception and maladaptive changes occurring in chronic pain. This article describes experimental protocols and analytical methods utilized in electrophysiological studies to investigate synaptic modulation and plasticity at the first station of somatosensory processing, the spinal cord dorsal horn. Protocols useful for characterizing the nature of synaptic inputs, the site of modulation (pre- versus postsynaptic), and the presence of short-term synaptic plasticity are presented. These methods can be employed to study the physiology of acute nociception, the pathological mechanisms of persistent inflammatory and neuropathic pain, and the pharmacology of receptors and channels involved in pain transmission. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Spinal cord dissection and acute slice preparation Basic Protocol 2: Stimulation of the dorsal root and extracellular recording (compound action potentials and field potentials) Basic Protocol 3: Patch-clamp recording from dorsal horn neurons: action potential firing patterns and evoked synaptic inputs Basic Protocol 4: Analysis of parameters responsible for changes in synaptic efficacy Basic Protocol 5: Recording and analysis of currents mediated by astrocytic glutamate.


Assuntos
Neuralgia , Roedores , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Transmissão Sináptica/fisiologia
6.
iScience ; 24(12): 103438, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34901791

RESUMO

Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling.

7.
Front Pharmacol ; 12: 764396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916942

RESUMO

Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.

8.
Life (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069060

RESUMO

Anterior cruciate ligament injury occurs when the ligament fibers are stretched, partially torn, or completely torn. The authors propose a new injury mechanism for non-contact anterior cruciate ligament injury of the knee. Accordingly, non-contact anterior cruciate ligament injury could not happen without the acute compression microinjury of the entrapped peripheral proprioceptive sensory axons of the proximal tibia. This would occur under an acute stress response when concomitant microcracks-fractures in the proximal tibia evolve due to the same excessive and repetitive compression forces. The primary damage may occur during eccentric contractions of the acceleration and deceleration moments of strenuous or unaccustomed fatiguing exercise bouts. This primary damage is suggested to be an acute compression/crush axonopathy of the proprioceptive sensory neurons in the proximal tibia. As a result, impaired proprioception could lead to injury of the anterior cruciate ligament as a secondary damage, which is suggested to occur during the deceleration phase. Elevated prostaglandin E2, nitric oxide and glutamate may have a critical neuro-modulatory role in the damage signaling in this dichotomous neuronal injury hypothesis that could lead to mechano-energetic failure, lesion and a cascade of inflammatory events. The presynaptic modulation of the primary sensory axons by the fatigued and microdamaged proprioceptive sensory fibers in the proximal tibia induces the activation of N-methyl-D-aspartate receptors in the dorsal horn of the spinal cord, through a process that could have long term relevance due to its contribution to synaptic plasticity. Luteinizing hormone, through interleukin-1ß, stimulates the nerve growth factor-tropomyosin receptor kinase A axis in the ovarian cells and promotes tropomyosin receptor kinase A and nerve growth factor gene expression and prostaglandin E2 release. This luteinizing hormone induced mechanism could further elevate prostaglandin E2 in excess of the levels generated by osteocytes, due to mechanical stress during strenuous athletic moments in the pre-ovulatory phase. This may explain why non-contact anterior cruciate ligament injury is at least three-times more prevalent among female athletes.

9.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401784

RESUMO

Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.


Assuntos
Neurônios GABAérgicos/metabolismo , Neurônios Aferentes/metabolismo , Dor/metabolismo , Receptores de GABA/metabolismo , Corno Dorsal da Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/metabolismo , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Dor/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos
10.
ACS Chem Neurosci ; 11(24): 4111-4127, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33263393

RESUMO

Opioids are the gold standard drugs for the treatment of acute and chronic severe pain, although their serious side effects constitute a big limitation. In the search for new and safer drugs, 5-HT1AR agonists are emerging as potential candidates in pain relief therapy. In this work, we evaluated the affinity and activity of enantiomers of the two newly synthesized, potent 5-HT1AR agonists N-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]-2-[2-(pyridin-4-yl)phenoxy]ethan-1-ammonium hydrogenoxalate (rac-1) and N-((2,2-diphenyl-1,3-dioxolan-4-yl)methyl)-2-(2-(1-methyl-1H-imidazol-5-yl)phenoxy)ethan-1-ammonium hydrogenoxalate (rac-2) in vitro and in vivo. The role of chirality in the interaction with 5-HT1AR was evaluated by molecular docking. The activity of the rac-1 was tested in mouse models of acute pain (hot plate) and severe tonic nociceptive stimulation (intraplantar formalin test). Rac-1 was active in the formalin test with a reduction in paw licking in both phases at 10 mg/kg, and its effect was abolished by the selective 5-HT1AR antagonist, WAY-100635. The eutomer (S)-1, but not the racemate, was active during the hot plate test at 10 and 20 mg/kg, and this effect was abolished by 30 min treatment with WAY-100635 at 30 min. Similarly to 8-OH-DPAT, (S)-1 evoked a slow outward current and depressed spontaneous glutamatergic transmission in superficial dorsal horn neurons, more effectively than rac-1. The eutomer (S)-1 showed promising developability properties, such as high selectivity over 5-HT subtypes, no interaction with the µ receptors, and low hepato- and cardiotoxicity. Therefore, (S)-1 may represent a potential candidate for the treatment of acute and chronic pain without having the adverse effects that are commonly associated with the classic opioid drugs.


Assuntos
Preparações Farmacêuticas , Receptor 5-HT1A de Serotonina , Analgésicos Opioides/farmacologia , Animais , Camundongos , Simulação de Acoplamento Molecular , Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA