Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(9): e2304454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115757

RESUMO

Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.


Assuntos
Osso e Ossos , Colágeno , Animais , Ovinos , Osteoblastos , Osso Cortical
2.
Proc Natl Acad Sci U S A ; 117(22): 11947-11953, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424103

RESUMO

Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.


Assuntos
Materiais Biomiméticos , Colágenos Fibrilares , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Biomimética/métodos , Córnea/química , Colágenos Fibrilares/síntese química , Colágenos Fibrilares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...