Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(4): 3933-3947, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30343506

RESUMO

Following success of pancreatic islet transplantation in the treatment of Type I diabetes mellitus, there is a growing interest in using cell-based treatment approaches. However, severe shortage of donor islets-pancreas impeded the growth, and made researchers to search for an alternative treatment approaches. In this context, recently, stem cell-based therapy has gained more attention. The current study demonstrated that epigenetic modification improves the in vitro differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) into pancreatic endocrine-like cells. Here we used two histone deacetylase (HDAC) inhibitors namely trichostatin A (TSA) and TMP269. TSA inhibits both class I and II HDACs whereas TMP269 inhibits only class IIa HDACs. WJMSCs were differentiated using a multistep protocol in a serum-free condition with or without TSA pretreatment. A marginal improvement in differentiation was observed after TSA pretreatment though it was not significant. However, exposing endocrine precursor-like cells derived from WJMSCs to TMP269 alone has significantly improved the differentiation toward insulin-producing cells. Further, increase in the expression of paired box 4 (PAX4), insulin, somatostatin, glucose transporter 2 (GLUT2), MAF bZIP transcription factor A (MAFA), pancreatic duodenal homeobox 1 (PDX-1), and NKX6.1 was observed both at messenger RNA and protein levels. Nevertheless, TMP269-treated cells secreted higher insulin upon glucose challenge, and demonstrated increased dithizone staining. These findings suggest that TMP269 may improve the in vitro differentiation of WJMSCs into insulin-producing cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Via Secretória , Transdução de Sinais , Fatores de Tempo
2.
Stem Cells Int ; 2016: 9581350, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798368

RESUMO

Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] ß and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFß and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities.

3.
Stem Cells Int ; 2015: 235192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972899

RESUMO

The identification of stable reference genes is a prerequisite for ensuring accurate validation of gene expression, yet too little is known about stable reference genes of porcine MSCs. The present study was, therefore, conducted to assess the stability of reference genes in porcine MSCs derived from bone marrow (BMSCs), adipose (AMSCs), and skin (SMSCs) with their in vitro differentiated cells into mesenchymal lineages such as adipocytes, osteocytes, and chondrocytes. Twelve commonly used reference genes were investigated for their threshold cycle (Ct) values by qRT-PCR. The Ct values of candidate reference genes were analyzed by geNorm software to clarify stable expression regardless of experimental conditions. Thus, Pearson's correlation was applied to determine correlation between the three most stable reference genes (NF3) and optimal number of reference genes (NFopt). In assessment of stability of reference gene across experimental conditions by geNorm analysis, undifferentiated MSCs and each differentiated status into mesenchymal lineages showed slightly different results but similar patterns about more or less stable rankings. Furthermore, Pearson's correlation revealed high correlation (r > 0.9) between NF3 and NFopt. Overall, the present study showed that HMBS, YWHAZ, SDHA, and TBP are suitable reference genes for qRT-PCR in porcine MSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...