Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 840134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387355

RESUMO

Continuous illumination induces the degeneration of photoreceptors. This animal model of light-induced retinal degeneration resembles many characteristics of human degenerative diseases of the outer retina, such as age-related macular degeneration. This work aimed to evaluate the potential neuroprotective effect of the modulation of adenosine A2A receptor in the model of light-induced retinal degeneration. Sprague-Dawley rats were intravitreally injected in the right eye with either CGS 21680, an adenosine A2A receptor agonist, or SCH 58261, an adenosine A2A receptor antagonist. Contralateral eyes were injected with respective vehicles as control. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas were processed by glial fibrillary acidic protein (GFAP) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, Western blotting (WB), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Another group of rats was subjected to functional studies by electroretinography. Animals treated with CGS21680 showed a significant increase of apoptotic nuclei in the outer nuclear layer and a significant increase of GFAP immunoreactive area of the retinas but did not alter WB nor electroretinography results. qRT-PCR showed that CGS 21680 significantly increased the expression of interleukin-1ß. On the opposite, SCH 58261 significantly decreased apoptotic nuclei in the outer nuclear layer and GFAP immunoreactive area of the retinas. It also significantly decreased GFAP and activated caspase-3 levels as measured by WB and preserved retinal function, as treated eyes showed significantly greater amplitudes of a- and b-waves and oscillatory potentials. qRT-PCR revealed that SCH 58261 significantly decreased the expression of tumor necrosis factor-α. These results show that the blockade of the A2A receptor before the start of the pathogenic process is neuroprotective, as it prevents light-induced retinal damage. The use of A2A receptor antagonists deserves to be evaluated in retinal degenerative diseases.

2.
Adv Drug Alcohol Res ; 2: 10734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38390616

RESUMO

In the last few years, an increasing interest in the neuroprotective effect of cannabinoids has taken place. The aim of the present work was to study the effects of modulating cannabinoid receptor 1 (CB1) in the context of light induced retinal degeneration (LIRD), using an animal model that resembles many characteristics of human age-related macular degeneration (AMD) and other degenerative diseases of the outer retina. Sprague Dawley rats (n = 28) were intravitreally injected in the right eye with either a CB1 agonist (ACEA), or an antagonist (AM251). Contralateral eyes were injected with respective vehicles as controls. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas from 28 animals were processed by GFAP-immunohistochemistry (IHC), TUNEL technique, Western blotting (WB), or qRT-PCR. ACEA-treated retinas showed a significantly lower number of apoptotic nuclei in the outer nuclear layer (ONL), lower levels of activated Caspase-3 by WB, and lower levels of glial reactivity by both GFAP-IHC and WB. qRT-PCR revealed that ACEA significantly decreased the expression of Bcl-2 and CYP1A1. Conversely, AM251-treated retinas showed a higher number of apoptotic nuclei in the ONL, higher levels of activated Caspase-3 by WB, and higher levels of glial reactivity as determined by GFAP-IHC and WB. AM251 increased the expression of Bcl-2, Bad, Bax, Aryl hydrocarbon Receptor (AhR), GFAP, and TNFα. In summary, the stimulation of the CB1 receptor, previous to the start of the pathogenic process, improved the survival of photoreceptors exposed to LIRD. The modulation of CB1 activity may be used as a neuroprotective strategy in retinal degeneration and deserves further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...