Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(6)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144377

RESUMO

NTHi is a human-adapted pathogen that colonizes the human respiratory tract. Strains of NTHi express multiple adhesins; however, there is a unique, mutually exclusive relationship between the major adhesins Hia and HMW1 and HMW2 (HMW1/2). Approximately 25% of NTHi strains express Hia, a phase-variable autotransporter protein that has a critical role in colonization of the host nasopharynx. The remaining 75% of strains express HMW1/2. Previous work has shown that the HMW1 and HMW2 proteins mediate binding to 2-3- and 2-6-linked sialic acid glycans found in the human respiratory tract. Here, we show that the high-affinity binding domain of Hia, binding domain 1 (BD1), is responsible for binding to α2-6-sialyllactosamine (2-6 SLN) glycans. BD1 is highly specific for glycans that incorporate the form of sialic acid expressed by humans, N-acetylneuraminic acid (Neu5Ac). We further show that Hia has lower-affinity binding activity for 2-3-linked sialic acid and that this binding activity is mediated via a distinct domain. Thus, Hia with its dual binding activities functionally mimics the combined activities of the HMW1 and HMW2 adhesins. In addition, we show that Hia has a role in biofilm formation by strains of NTHi that express the adhesin. Knowledge of the binding affinity of this major NTHi adhesin and putative vaccine candidate will direct and inform development of future vaccines and therapeutic strategies for this important pathogen.IMPORTANCE Host-adapted bacterial pathogens like NTHi have evolved specific mechanisms to colonize their restricted host niche. Relatively few of the adhesins expressed by NTHi have been characterized as regards their binding affinity at the molecular level. In this work, we show that the major NTHi adhesin Hia preferentially binds to Neu5Ac-α2-6-sialyllactosamine, the form of sialic acid expressed in humans. The receptors targeted by Hia in the human airway mirror those targeted by influenza A virus and indicates the broad importance of sialic acid glycans as receptors for microbes that colonize the human airway.


Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Adesinas Bacterianas/química , Sequência de Aminoácidos , Sítios de Ligação , Biofilmes , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica
2.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064827

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that is adapted exclusively to human hosts. NTHi utilizes sialic acid from the host as a carbon source and as a terminal sugar on the outer membrane glycolipid lipooligosaccharide (LOS). Sialic acid expressed on LOS is critical in NTHi biofilm formation and immune evasion. There are two major forms of sialic acids in most mammals, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter of which is derived from Neu5Ac. Humans lack the enzyme to convert Neu5Ac to Neu5Gc and do not express Neu5Gc in normal tissues; instead, Neu5Gc is recognized as a foreign antigen. A recent study showed that dietary Neu5Gc can be acquired by NTHi colonizing humans and then presented on LOS, which acts as an antigen for the initial induction of anti-Neu5Gc antibodies. Here we examined Neu5Gc uptake and presentation on NTHi LOS. We show that, although Neu5Gc and Neu5Ac are utilized equally well as sole carbon sources, Neu5Gc is not incorporated efficiently into LOS. When equal amounts of Neu5Gc and Neu5Ac are provided in culture media, there is ∼4-fold more Neu5Ac incorporated into LOS, suggesting a bias in a step of the LOS biosynthetic pathway. CMP-Neu5Ac synthetase (SiaB) was shown to have ∼4,000-fold-higher catalytic efficiency for Neu5Ac than for Neu5Gc. These data suggest that NTHi has adapted preferential utilization of Neu5Ac, thus avoiding presentation of the nonhuman Neu5Gc in the bacterial cell surface. The selective pressure for this adaptation may represent the human antibody response to the Neu5Gc xenoantigen.IMPORTANCE Host-adapted bacterial pathogens such as NTHi cannot survive out of their host environment and have evolved host-specific mechanisms to obtain nutrients and evade the immune response. Relatively few of these host adaptations have been characterized at the molecular level. NTHi utilizes sialic acid as a nutrient and also incorporates this sugar into LOS, which is important in biofilm formation and immune evasion. In the present study, we showed that NTHi has evolved to preferentially utilize the Neu5Ac form of sialic acid. This adaptation is due to the substrate preference of the enzyme CMP-Neu5Ac synthetase, which synthesizes the activated form of Neu5Ac for macromolecule biosynthesis. This adaptation allows NTHi to evade killing by a human antibody response against the nonhuman sialic acid Neu5Gc.


Assuntos
Adaptação Fisiológica , Haemophilus influenzae/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Membrana Celular/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Evasão da Resposta Imune , Ácidos Siálicos/metabolismo , Especificidade por Substrato
3.
Biochem Biophys Res Commun ; 503(2): 1103-1107, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29944882

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is a human-adapted bacterial pathogen, responsible for infections of the human respiratory tract. This pathogen expresses a range of adhesins that mediate binding to host cells. Most NTHi strains can express the related adhesins HMW1 and HMW2. Expression of HMW proteins is phase-variable: changes in the length of simple-sequence repeats located in the encoding genes promoter regions results in changes in expression levels of these adhesins. HMW expression is also controlled by epigenetic regulation. HMW1 has been previously demonstrated to bind α 2-3 sialyl-lactosamine, but affinity of this interaction has not been investigated. The host receptor(s) for HMW2 is currently unknown. We hypothesized that host glycans may act as receptors for HMW2-mediated adherence. We examined the glycan-binding activity of HMW2 using glycan arrays and Surface Plasmon Resonance (SPR). These studies demonstrate that HMW2 binds 2-6 linked N-acetylneuraminic acid with high affinity. HMW2 did not bind glycan structures containing the non-human form of sialic acid, N-glycolylneuraminic acid. Thus, the specificity of HMW1 and HMW2 have complementary lectin activities that may allow NTHi distinct niches in the human host.


Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/metabolismo , Lectinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Humanos , Polissacarídeos/metabolismo , Ligação Proteica
4.
Pediatr Res ; 83(3): 739-746, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29211057

RESUMO

BackgroundGroup B Streptococcus (GBS) infection causes inflammatory comorbidities in newborns. While the mechanisms remain unclear, evidence suggests that impaired innate-adaptive immune interactions may be contributory. We hypothesized that GBS-stimulated neonatal neutrophils provide a milieu that may drive proinflammatory T-helper (Th) cell programming.MethodsNeutrophils were stimulated with Type III GBS (COH1); supernatants or intact neutrophils were cocultured with CD4+ T cells or regulatory T cells (Tregs). Resulting intracellular cytokines and nuclear transcription factors were determined by multicolor flow cytometry.ResultsGBS-stimulated neutrophils released soluble mediators that induced greater interleukin-17 (IL-17) responses in neonatal vs. adult CD4+ T cells in the absence of added polarizing cytokines. GBS-stimulated neonatal neutrophils also induced robust expression of the canonical nuclear transcription factors for Th1 (Tbet) and Th17 (IL-17) cells in CD4+ T cells. Following GBS stimulation, both intact neutrophils and neutrophil-derived mediators promoted the generation of Tregs with Th1 and Th17 characteristics.ConclusionGBS-stimulated neonatal neutrophils bias the in vitro Th differentiation program of neonatal CD4+ T cells and promote proinflammatory Th1 and Th17 phenotypes in Tregs. Our data suggest that developmental modifications of innate-adaptive immune cross-talk mechanisms may contribute to the inflammatory complications associated with neonatal GBS infection.


Assuntos
Sangue Fetal/citologia , Neutrófilos/imunologia , Infecções Estreptocócicas/imunologia , Linfócitos T/imunologia , Adulto , Diferenciação Celular , Humanos , Recém-Nascido , Inflamação , Interleucina-17/metabolismo , Ativação Linfocitária , Fenótipo , Streptococcus , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia
5.
Clin Vaccine Immunol ; 24(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28768669

RESUMO

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/imunologia , Haemophilus influenzae/imunologia , Imunogenicidade da Vacina , Otite Média/prevenção & controle , Adesinas Bacterianas , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/química , Chinchila , Modelos Animais de Doenças , Infecções por Haemophilus/imunologia , Vacinas Anti-Haemophilus/administração & dosagem , Imunização , Proteínas Opsonizantes/imunologia , Otite Média/imunologia , Otite Média/microbiologia , Fagocitose
6.
Otolaryngol Head Neck Surg ; 156(4_suppl): S51-S62, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28372529

RESUMO

Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.


Assuntos
Otite Média/microbiologia , Otite Média/virologia , Congressos como Assunto , Humanos
7.
Otolaryngol Head Neck Surg ; 156(4_suppl): S76-S87, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28372533

RESUMO

Objective To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources PubMed database of the National Library of Science. Review Methods We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.


Assuntos
Otite Média/prevenção & controle , Vacinas Pneumocócicas , Vacinas Virais , Antígenos de Bactérias , Antígenos Virais , Congressos como Assunto , Haemophilus influenzae , Humanos , Moraxella catarrhalis , Otite Média/imunologia , Streptococcus pneumoniae , Vacinas Conjugadas
8.
Clin Vaccine Immunol ; 23(1): 37-46, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512048

RESUMO

The HMW1 and HMW2 proteins are highly immunogenic adhesins expressed by approximately 75% of nontypeable Haemophilus influenzae (NTHi) strains, and HMW1- and HMW2-specific antibodies can mediate opsonophagocytic killing of NTHi. In this study, we assessed the ability of HMW1- and HMW2-specific antibodies in sera from healthy adults and convalescent-phase sera from children with NTHi otitis media to mediate killing of homologous and heterologous NTHi. The serum samples were examined pre- and postadsorption on HMW1 and HMW2 affinity columns, and affinity-purified antibodies were assessed for ability to mediate killing of homologous and heterologous strains. Adult serum samples mediated the killing of six prototype NTHi strains at titers of <1:10 to 1:1,280. HMW1- and HMW2-adsorbed sera demonstrated unchanged to 8-fold decreased opsonophagocytic titers against the homologous strains. Each affinity-purified antibody preparation mediated the killing of the respective homologous strain at titers of <1:10 to 1:320 and of the five heterologous strains at titers of <1:10 to 1:320, with most preparations killing most heterologous strains to some degree. None of the acute-phase serum samples from children mediated killing, but each convalescent-phase serum sample mediated killing of the infecting strain at titers of 1:40 to 1:640. HMW1- and HMW2-adsorbed convalescent-phase serum samples demonstrated ≥4-fold decreases in titer. Three of four affinity-purified antibody preparations mediated killing of the infecting strain at titers of 1:20 to 1:320, but no killing of representative heterologous strains was observed. HMW1- and HMW2-specific antibodies capable of mediating opsonophagocytic killing are present in the serum from normal adults and develop in convalescent-phase sera of children with NTHi otitis media. Continued investigation of the HMW1 and HMW2 proteins as potential vaccine candidates for the prevention of NTHi disease is warranted.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/sangue , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Fagocitose , Adulto , Anticorpos Antibacterianos/imunologia , Criança , Infecções por Haemophilus/microbiologia , Humanos , Imunidade Inata , Lactente , Proteínas Opsonizantes/imunologia , Otite Média/microbiologia
9.
Nat Commun ; 6: 7828, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215614

RESUMO

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.


Assuntos
Adaptação Fisiológica/genética , Metilação de DNA/genética , DNA Bacteriano/genética , Epigênese Genética , Haemophilus influenzae/genética , Evasão da Resposta Imune/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Alelos , Animais , Sequência de Bases , Biofilmes , Chinchila , Modelos Animais de Doenças , Orelha Média , Haemophilus influenzae/imunologia , Haemophilus influenzae/patogenicidade , Dados de Sequência Molecular , Otite Média/microbiologia , Virulência/genética
10.
J Infect Dis ; 212(4): 645-53, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712964

RESUMO

Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investigated as a vaccine candidate. Here we show that Hia phase variation is controlled by changes in the length of a polythymidine tract located in the hia promoter. Studies of an invasive clinical isolate (strain R2866) show that strains expressing high Hia levels are more efficiently killed by opsonophagocytosis. An opsonophagocytic assay was used to select for a subpopulation of variants that expressed a low level of Hia, which facilitated their escape from killing by anti-Hia antisera. Conversely, a subpopulation of variants expressing a high level of Hia was selected for during passaging through Chang cells. In both cases, phase variation of Hia expression corresponded directly with discrete modal changes in polythymidine tract length. In the chinchilla model of NTHi infection, we observed consistent selection for high Hia expression upon nasopharyngeal colonization, confirming the key role of phase-variable expression of Hia within a specific niche in vivo.


Assuntos
Adesinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/classificação , Adesinas Bacterianas/genética , Animais , Portador Sadio , Linhagem Celular , Chinchila , Fluorescência , Humanos , Nasofaringe/microbiologia , Otite Média/microbiologia , Otite Média/patologia , Reação em Cadeia da Polimerase/métodos
12.
Clin Vaccine Immunol ; 21(5): 613-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574538

RESUMO

The HMW1/HMW2 and Hia proteins are highly immunogenic surface adhesins of nontypeable Haemophilus influenzae (NTHi). Approximately 75% of NTHi strains express HMW1/HMW2 adhesins, and most of the remaining 25% express an Hia adhesin. Our objective in this study was to assess the ability of antisera raised against purified HMW1/HMW2 proteins or recombinant Hia proteins to mediate opsonophagocytic killing of a large panel of unrelated NTHi strains. Native HMW1/HMW2 proteins were purified from three HMW1/HMW2-expressing NTHi strains. Recombinant fusion proteins expressing surface-exposed segments of either of two prototype Hia proteins were purified from Escherichia coli transformants. Immune sera raised in guinea pigs were assessed for their ability to mediate killing of NTHi in an opsonophagocytic assay with the HL-60 phagocytic cell line. The three HMW1/HMW2 antisera mediated killing of 22 of 65, 43 of 65, and 28 of 65 unrelated HMW1/HMW2-expressing NTHi strains, respectively. As a group, the three sera mediated killing of 48 of 65 HMW1/HMW2-expressing strains. The two Hia immune sera mediated killing of 12 of 24 and 13 of 24 unrelated Hia-expressing NTHi strains, respectively. Together, they mediated killing of 15 of 24 Hia-expressing strains. Neither the HMW1/HMW2 nor the Hia antisera mediated killing of NTHi expressing the alternative adhesin type. Antibodies directed against native HMW1/HMW2 proteins and recombinant Hia proteins are capable of mediating broad-based opsonophagocytic killing of homologous and heterologous NTHi strains. A vaccine formulated with a limited number of HMW1/HMW2 and Hia proteins might provide protection against disease caused by most NTHi strains.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/imunologia , Haemophilus influenzae/imunologia , Proteínas Opsonizantes/imunologia , Fagocitose , Adesinas Bacterianas/isolamento & purificação , Adulto , Animais , Atividade Bactericida do Sangue , Linhagem Celular , Criança , Escherichia coli/genética , Expressão Gênica , Cobaias , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
14.
Otolaryngol Head Neck Surg ; 148(4 Suppl): E90-101, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23536534

RESUMO

OBJECTIVE: To update progress on the effectiveness of vaccine for prevention of acute otitis media (AOM) and identification of promising candidate antigens against Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis. REVIEW METHODS: Literature searches were performed in OvidSP and PubMed restricted to articles published between June 2007 and September 2011. Search terms included otitis media, vaccines, vaccine antigens, and each of the otitis pathogens and candidate antigens identified in the ninth conference report. CONCLUSIONS: The current report provides further evidence for the effectiveness of pneumococcal conjugate vaccines (PCVs) in the prevention of otitis media. Observational studies demonstrate a greater decline in AOM episodes than reported in clinical efficacy trials. Unmet challenges include extending protection to additional serotypes and additional pathogens, the need to prevent early episodes, the development of correlates of protection for protein antigens, and the need to define where an otitis media vaccine strategy fits with priorities for child health. IMPLICATIONS FOR PRACTICE: Acute otitis media continues to be a burden on children and families, especially those who suffer from frequent recurrences. The 7-valent PCV (PCV7) has reduced the burden of disease as well as shifted the pneumococcal serotypes and the distribution of otopathogens currently reported in children with AOM. Antibiotic resistance remains an ongoing challenge. Multiple candidate antigens have demonstrated the necessary requirements of conservation, surface exposure, immunogenicity, and protection in animal models. Further research on the role of each antigen in pathogenesis, in the development of correlates of protection in animal models, and in new adjuvants to elicit responses in the youngest infants is likely to be productive and permit more antigens to move into human clinical trials.


Assuntos
Otite Média/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Medicina Baseada em Evidências , Haemophilus influenzae/isolamento & purificação , Humanos , Moraxella catarrhalis/isolamento & purificação , Otite Média/imunologia , Otite Média/microbiologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/isolamento & purificação , Resultado do Tratamento , Vacinas Conjugadas/administração & dosagem
17.
Am J Respir Cell Mol Biol ; 44(5): 606-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21239604

RESUMO

Airway bacterial infections are a major problem in lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Increased Th2 cytokines, such as IL-13, are observed in lung diseases and may contribute to bacterial infections. How Th2 cytokines affect bacterial infection remains unknown. MUC18, an adhesion molecule shown to be involved in the pathogenesis of malignant melanoma, has been recently identified in airway epithelial cells of patients with COPD. We investigated MUC18 regulation by IL-13 and the role of MUC18 in bacterial adherence to epithelial cells. Human airway tissues, brushed bronchial epithelial cells from normal subjects and subjects with asthma, and epithelial cell lines (e.g., HEK293 cells) were used to study the regulation of MUC18 by IL-13 and the involvement of MUC18 in bacterial (e.g., Mycoplasma pneumoniae [Mp] and nontypeable Haemophilus influenzae [NTHi]) adherence to epithelial cells. Asthmatic bronchial epithelium expressed higher levels of MUC18 than normal bronchial epithelium. IL-13 increased MUC18 in cultured bronchial epithelial cells from normal subjects and particularly from subjects with asthma. IL-13-induced MUC18 expression may be modulated in part through transcription factor specificity protein 1. Overexpression of human MUC18 in HEK293 cells increased cell-associated Mp and NTHi levels. Moreover, MUC18 was shown to directly interact with Mp and NTHi. These results for the first time show that an allergic airway milieu (e.g., IL-13) increases MUC18 expression, which may contribute to increased bacterial infection/colonization in asthma and other lung diseases.


Assuntos
Células Epiteliais/citologia , Interleucina-13/biossíntese , Pulmão/metabolismo , Regulação para Cima , Adulto , Idoso , Asma/metabolismo , Asma/microbiologia , Aderência Bacteriana , Brônquios/metabolismo , Brônquios/microbiologia , Antígeno CD146/metabolismo , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Interleucina-13/metabolismo , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Células Th2/metabolismo
18.
Clin Vaccine Immunol ; 17(10): 1567-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685934

RESUMO

The objective of the present study was to construct and assess the immunogenicity of recombinant adenovirus vectors expressing the HMW1, HMW2, or Hia protein of nontypeable Haemophilus influenzae (NTHi). These proteins are critical adhesins and potential protective antigens expressed by NTHi. Segments of the hmw1A and hmw2A structural genes that encode the distal one-half of mature HMW1 or HMW2 were cloned into the T7 expression vector pGEMEX-2. These constructs encoded stable HMW1 or HMW2 recombinant fusion protein that expresses B-cell epitopes common to most NTHi strains. A segment of the hia gene that encodes the surface-exposed portion of mature Hia was also cloned into pGEMEX-2. The resulting T7 gene 10 translational fusions were excised from the parent plasmids and cloned into the shuttle plasmid pDC316. Cotransfection of HEK 293 cells with the pDC316 derivatives and pBHGloxΔE1,3Cre resulted in the production of viral plaques from which recombinant adenoviruses expressing fusion proteins were recovered. Chinchillas immunized intraperitoneally with a single 10(8)-PFU dose of either the HMW2 or Hia adenoviral construct developed high anti-HMW2 or anti-Hia serum antibody titers within 4 weeks of immunization. Chinchillas immunized intranasally with a single 10(7)- to 10(9)-PFU dose of the Hia adenoviral construct also developed high anti-Hia serum antibody titers within 8 weeks of immunization. Recombinant adenoviruses represent a promising system to induce mucosal and systemic immunity and protection against mucosal diseases such as otitis media. Recombinant adenoviruses expressing recombinant HMW1, HMW2, or Hia protein will be important new tools in NTHi vaccine development efforts.


Assuntos
Adenoviridae/genética , Adesinas Bacterianas/imunologia , Vetores Genéticos , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/imunologia , Adesinas Bacterianas/genética , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Linhagem Celular , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Expressão Gênica , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas Anti-Haemophilus/genética , Haemophilus influenzae/genética , Haemophilus influenzae/imunologia , Humanos , Injeções Intraperitoneais , Plasmídeos , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Ensaio de Placa Viral
19.
Clin Vaccine Immunol ; 16(7): 1040-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19474261

RESUMO

The Hia autotransporter proteins are highly immunogenic surface adhesins expressed by nontypeable Haemophilus influenzae (NTHI). The objective of our study was to assess the opsonophagocytic activity of anti-Hia antibodies against homologous and heterologous NTHI. A segment of the hia gene that encodes a surface-exposed portion of the H. influenzae strain 11 Hia protein was cloned into a pGEMEX-2 expression vector. Escherichia coli JM101 was transformed with the resulting pGEMEX-Hia BstEII del recombinant plasmid, and recombinant fusion protein was recovered. An immune serum against recombinant GEMEX-Hia (rGEMEX-Hia)-mediated killing of the homologous NTHI strain 11 at a 1:160 titer and five heterologous Hia-expressing strains at titers of > or =1:40. Immune serum did not mediate killing of two Hia-knockout strains whose hia genes were inactivated but did mediate killing of one knockout strain at a high titer after the strain was transformed with a plasmid containing the hia gene. Immune serum did not mediate killing of HMW1/HMW2-expressing NTHI strains, which do not express the Hia adhesin. However, when two representative HMW1/HMW2-expressing strains were transformed with the plasmid containing the hia gene, they expressed abundant Hia and were susceptible to killing by the immune serum. Immune serum did not mediate killing of HMW1/HMW2-expressing strains transformed with the plasmid without the hia gene. Our results demonstrate that the Hia proteins of NTHI are targets of opsonophagocytic antibodies and that shared epitopes recognized by such antibodies are present on the Hia proteins of unrelated NTHI strains. These data argue for the continued investigation of the Hia proteins as vaccine candidates for the prevention of NTHI disease.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/imunologia , Haemophilus influenzae/imunologia , Viabilidade Microbiana , Proteínas Opsonizantes/imunologia , Fagocitose , Adesinas Bacterianas/genética , Animais , Chinchila , Deleção de Genes , Teste de Complementação Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...