Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38640436

RESUMO

Several epidemiological studies have provided evidence that long-term exposure to fine particulate matter (pm2.5) increases mortality rate. Furthermore, some population characteristics (e.g., age, race, and socioeconomic status) might play a crucial role in understanding vulnerability to air pollution. To inform policy, it is necessary to identify groups of the population that are more or less vulnerable to air pollution. In causal inference literature, the group average treatment effect (GATE) is a distinctive facet of the conditional average treatment effect. This widely employed metric serves to characterize the heterogeneity of a treatment effect based on some population characteristics. In this paper, we introduce a novel Confounder-Dependent Bayesian Mixture Model (CDBMM) to characterize causal effect heterogeneity. More specifically, our method leverages the flexibility of the dependent Dirichlet process to model the distribution of the potential outcomes conditionally to the covariates and the treatment levels, thus enabling us to: (i) identify heterogeneous and mutually exclusive population groups defined by similar GATEs in a data-driven way, and (ii) estimate and characterize the causal effects within each of the identified groups. Through simulations, we demonstrate the effectiveness of our method in uncovering key insights about treatment effects heterogeneity. We apply our method to claims data from Medicare enrollees in Texas. We found six mutually exclusive groups where the causal effects of pm2.5 on mortality rate are heterogeneous.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Teorema de Bayes , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos
2.
Sci Rep ; 13(1): 4722, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959330

RESUMO

Eye movement data has been extensively utilized by researchers interested in studying decision-making within the strategic setting of economic games. In this paper, we demonstrate that both deep learning and support vector machine classification methods are able to accurately identify participants' decision strategies before they commit to action while playing games. Our approach focuses on creating scanpath images that best capture the dynamics of a participant's gaze behaviour in a way that is meaningful for predictions to the machine learning models. Our results demonstrate a higher classification accuracy by 18% points compared to a baseline logistic regression model, which is traditionally used to analyse gaze data recorded during economic games. In a broader context, we aim to illustrate the potential for eye-tracking data to create information asymmetries in strategic environments in favour of those who collect and process the data. These information asymmetries could become especially relevant as eye-tracking is expected to become more widespread in user applications, with the seemingly imminent mass adoption of virtual reality systems and the development of devices with the ability to record eye movement outside of a laboratory setting.


Assuntos
Movimentos Oculares , Interface Usuário-Computador , Humanos , Comportamento de Escolha
3.
Nat Energy ; 7(2): 177-185, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35425643

RESUMO

Little is known about whether exposure to unconventional oil and gas development is associated with higher mortality risks in the elderly and whether related air pollutants are exposure pathways. We studied a cohort of 15,198,496 Medicare beneficiaries (136,215,059 person-years) in all major U.S. unconventional exploration regions from 2001 to 2015. We gathered data from records of more than 2.5 million oil and gas wells. For each beneficiary's ZIP code of residence and year in the cohort, we calculated a proximity-based and a downwind-based pollutant exposure. We analyzed the data using two methods: Cox proportional hazards model and Difference-in-Differences. We found evidence of statistically significant higher mortality risk associated with living in proximity to and downwind of unconventional oil and gas wells. Our results suggest that primary air pollutants sourced from unconventional oil and gas exploration can be a major exposure pathway with adverse health effects in the elderly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...