Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 904479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814428

RESUMO

Glioblastoma (GBM) remains lethal with no effective treatments. Despite the comprehensive identification of commonly perturbed molecular pathways, little is known about the disease's etiology, particularly in early stages. Several studies indicate that GBM is initiated in neural progenitor and/or stem cells. Here, we report that differentiated astrocytes are susceptible to GBM development when initiated by perturbation of the RB pathway, which induces a progenitor phenotype. In vitro and in vivo inactivation of Rb tumor suppression (TS) induces cortical astrocytes to proliferate rapidly, express progenitor markers, repress differentiation markers, and form self-renewing neurospheres that are susceptible to multi-lineage differentiation. This phenotype is sufficient to cause grade II astrocytomas which stochastically progress to GBM. Together with previous findings, these results demonstrate that cell susceptibility to GBM depends on the initiating driver.

2.
Circ Res ; 122(9): 1276-1289, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700072

RESUMO

Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Análise de Sistemas , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/terapia , Doença Crônica , Técnicas de Diagnóstico Cardiovascular , Progressão da Doença , Diagnóstico Precoce , Exposição Ambiental , Previsões , Estudo de Associação Genômica Ampla , Genômica , Humanos , Técnicas In Vitro , Desenvolvimento Industrial , Modelos Cardiovasculares , Medicina de Precisão , Pesquisa Translacional Biomédica
3.
Proc Natl Acad Sci U S A ; 114(9): 2271-2276, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167799

RESUMO

Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Ativinas/farmacologia , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Análise de Célula Única , Fatores de Transcrição/metabolismo
4.
PLoS One ; 7(8): e43243, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952654

RESUMO

MicroRNAs (miRNAs) are short regulatory RNA molecules that interfere with the expression of target mRNA by binding to complementary sequences. Currently, the most common method for identification of targets of miRNAs is computational prediction based on free energy change calculations, target site accessibility and conservation. Such algorithms predict hundreds of targets for each miRNA, necessitating tedious experimentation to identify the few functional targets. Here we explore the utility of miRNA-proteomics as an approach to identifying functional miRNA targets. We used Stable Isotope Labeling by amino acids in cell culture (SILAC) based proteomics to detect differences in protein expression induced by the over-expression of miR-34a and miR-29a. Over-expression of miR-29a, a miRNA expressed in the brain and in cells of the blood lineage, resulted in the differential expression of a set of proteins. Gene Ontology based classification showed that a significant sub-set of these targets, including Voltage Dependent Anion Channel 1 and 2 (VDAC1 and VDAC2) and ATP synthetase, were mitochondrial proteins involved in apoptosis. Using reporter assays, we established that miR-29a targets the 3' Untranslated Regions (3' UTR) of VDAC1 and VDAC2. However, due to the limited number of proteins identified using this approach and the inability to differentiate between primary and secondary effects we conclude that miRNA-proteomics is of limited utility as a high-throughput alternative for sensitive and unbiased miRNA target identification. However, this approach was valuable for rapid assessment of the impact of the miRNAs on the cellular proteome and its biological role in apoptosis.


Assuntos
Apoptose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteômica/métodos , Regiões 3' não Traduzidas , Complexos de ATP Sintetase/metabolismo , Algoritmos , Técnicas de Cultura de Células , Simulação por Computador , Células HEK293 , Humanos , MicroRNAs/biossíntese , Modelos Genéticos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo
5.
Nucleic Acids Res ; 40(18): 8965-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821566

RESUMO

Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Histonas/análise , Fígado/metabolismo , Nucleossomos/metabolismo , Sítio de Iniciação de Transcrição , Animais , Imunoprecipitação da Cromatina , Feminino , Inativação Gênica , Camundongos , Nucleossomos/química
6.
RNA ; 16(1): 16-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948767

RESUMO

Eukaryotic gene expression is controlled at the post-transcriptional level by small noncoding RNAs called microRNAs (miRNA). miRNAs play important roles during early development and participate in gene regulatory circuits in the cell. Different high-throughput expression analysis methods including microarrays, bead-based detection, and small RNA cloning have been applied to quantitatively detect miRNAs in various tissues, cell types, and biological conditions. High-throughput expression data was collected from public repositories and processed to create a database of miRNA expression profiles. Several commonly used normalization methods were compared to identify suitable methods for cross-platform comparison of high-throughput miRNA expression data. The database provides interlaboratory and interplatform validated reference expression levels for miRNAs. The normalized expression profiles were validated by querying for well-established features of miRNA expression. Firstly, expression profiles of several tissue-specific miRNAs showed good agreement between the database and previously reported profiles. We have also identified a set of miRNAs that are constitutively expressed across mammalian tissues. Secondly, we used the database to compare the expression patterns of miRNAs belonging to the let-7 family, where the divergence in expression patterns implies that they may have diversified functionally. Lastly, we compared expression profiles of intronic and clustered miRNAs. Expression profiles of intronic miRNAs and clustered miRNAs showed either very good, or in certain cases, very poor correlation with the host gene. Interplatform comparison of miRNA expression profiles thus provides a resource of consensus expression profiles that can be used in the future for studying miRNA function and regulation.


Assuntos
Sequência Consenso/genética , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/normas , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/normas , Algoritmos , Animais , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Metanálise como Assunto , MicroRNAs/análise , MicroRNAs/metabolismo , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Especificidade de Órgãos/genética , Valores de Referência
7.
Bioessays ; 31(9): 981-92, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19642110

RESUMO

Incomplete penetrance and variable expressivity are non-Mendelian phenomena resulting in the lack of correlation between genotype and phenotype. Not withstanding the diversity in mechanisms, differential expression of homologous alleles within cells manifests as variations in penetrance and expressivity of mutations between individuals of the same genotype. These phenomena are seen most often in dominantly inherited diseases, implying that they are sensitive to concentration of the gene product. In this framework and the advances in understanding the role of microRNA (miRNA) in fine-tuning gene expression at translational level, we propose miRNA-mediated regulation as a mechanism for incomplete penetrance and variable expressivity. The presence of miRNA binding sites at 3' UTR, co-expression of target gene-miRNA pairs for genes showing incomplete penetrance and variable expressivity derived from available data lend support to our hypothesis. Single nucleotide polymorphisms in the miRNA target site facilitate the implied differential targeting of the transcripts from homologous alleles.


Assuntos
Expressão Gênica , MicroRNAs/genética , Penetrância , Alelos , Animais , Humanos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...