Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mov Sci ; 83: 102951, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460956

RESUMO

Imitation is a significant daily activity involved in social interaction and motor learning. Imitation has been theorized to be performed in at least two ways. In posture-based imitation, individuals reproduce how the body should look and feel, and are sensitive to the relative positioning of body parts. In trajectory imitation, individuals mimic the spatiotemporal motion path of the end effector. There are clear anecdotal situations in which one might benefit from imitating postures (when learning ballet) or trajectories (when learning to reach around objects). However, whether these are in fact distinct methods of imitation, and if so, whether they may be applied interchangeably to perform the same task, remain unknown. If these are indeed separate mechanisms that rely on different computational and neural resources, a cost should be incurred when switching from using one mechanism to the other within the context of a single task. Therefore, observing a processing cost would both provide evidence that these are indeed two distinct mechanisms, and that they may be used interchangeably when trying to imitate the same stimulus. To test this, twenty-five healthy young adults performed a sequential multitasking imitation task. Participants were first instructed to pay attention to the limb postures or the hand path of a video-recorded model, then performed a neutral, congruent, or incongruent intervening motor task. Finally, participants imitated the modeled movement. We examined both spatial and temporal imitation accuracy as well as individual spatial consistency. When the primary task involved imitating trajectories, analysis of individual consistency suggested a processing cost: movements following the posture-matching intervening task were less consistent with baseline (neutral) performance, suggesting performance may be disrupted by the incongruence. This effect was not observed when imitating limb postures. In summary, we present initial evidence for a difference between posture matching and trajectory imitation as a result of instructions and intervening tasks that is consistent with the existence of two computationally distinct imitation mechanisms.


Assuntos
Comportamento Imitativo , Postura , Mãos , Humanos , Movimento , Extremidade Superior , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-37063476

RESUMO

Imitation is an important daily activity involved in social interactions, motor learning, and is commonly used for rehabilitation after stroke. Moreover, deficits in imitation of novel movements commonly occur after left hemisphere stroke (LCVA) in the syndrome of limb apraxia. In the current study, we used a novel virtual reality (VR) imitation paradigm to assess two factors that have remained underexplored in novel movement imitation: the imitation of complex, dynamic full-arm movements, and the effect of spatial perspective. VR holds promise as a tool for a number of clinical assessments and treatments, but has very rarely been studied in the context of imitation or diagnosis of apraxia. Thirty participants (18 with LCVA and 12 age- and education-matched controls) wore a VR headset and observed and imitated an instructor avatar demonstrating arm movements. Three spatial perspectives were examined within-subjects: first-person, third-person mirror, and third-person anatomical. Movements of the ipsilesional (left) arm were recorded and qualitatively coded for accuracy compared to the instructor avatar. Participants also completed embodiment questionnaires, a measure of limb apraxia (imitation of video-recorded meaningless movements), and three computerized background tasks that were hypothesized to evoke some of the same processing requirements of each of the three perspective conditions: a block-matching task, a block-mirroring task, and a mental rotation task. Imitation accuracy was highest in the first-person perspective, consistent with predictions, but did not differ between third-person mirror and anatomical. Surprisingly, patients and controls performed similarly on the imitation task for all spatial perspectives, with overall modest accuracy in both groups, and both patients and controls felt a moderate level of embodiment of their own avatar. Higher imitation accuracy related to quicker block-matching reaction times and higher mental rotation accuracy, regardless of perspective, but was unrelated to imitation of video-recorded meaningless movements. In sum, virtual reality provides advantages in terms of experimental manipulation and control but may present challenges in detecting clinical imitation deficits (limb apraxia).

3.
Cogn Res Princ Implic ; 6(1): 3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33411062

RESUMO

People with visual impairment often rely on their residual vision when interacting with their spatial environments. The goal of visual accessibility is to design spaces that allow for safe travel for the large and growing population of people who have uncorrectable vision loss, enabling full participation in modern society. This paper defines the functional challenges in perception and spatial cognition with restricted visual information and reviews a body of empirical work on low vision perception of spaces on both local and global navigational scales. We evaluate how the results of this work can provide insights into the complex problem that architects face in the design of visually accessible spaces.


Assuntos
Baixa Visão , Cognição , Humanos , Transtornos da Visão , Visão Ocular
4.
Mem Cognit ; 49(3): 572-585, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33108632

RESUMO

The relative contribution of different sources of information for spatial updating - keeping track of one's position in an environment - has been highly debated. Further, children and adults may differ in their reliance on visual versus body-based information for spatial updating. In two experiments, we tested children (age 10-12 years) and young adult participants on a virtual point-to-origin task that varied the types of self-motion information available for translation: full-dynamic (walking), visual-dynamic (controller induced), and no-dynamic (teleporting). In Experiment 1, participants completed the three conditions in an indoor virtual environment with visual landmark cues. Adults were more accurate in the full- and visual-dynamic conditions (which did not differ from each other) compared to the no-dynamic condition. In contrast, children were most accurate in the visual-dynamic condition and also least accurate in the no-dynamic condition. Adults outperformed children in all conditions. In Experiment 2, we removed the potential for relying on visual landmarks by running the same paradigm in an outdoor virtual environment with no geometrical room cues. As expected, adults' errors increased in all conditions, but performance was still relatively worse in teleporting. Surprisingly, children showed overall similar accuracy and patterns across locomotion conditions to adults. Together, the results support the importance of dynamic translation information (either visual or body-based) for spatial updating across both age groups, but suggest children may be more reliant on visual information than adults.


Assuntos
Realidade Virtual , Criança , Sinais (Psicologia) , Humanos , Percepção de Movimento , Percepção Espacial , Adulto Jovem
5.
Perception ; 49(11): 1200-1212, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33040663

RESUMO

Successful performance on the water-level task, a common measure of spatial perception, requires adopting an environmental, rather than object-centered, spatial frame of reference. Use of this strategy has not been systematically studied in prepubertal children, a developmental period during which individual differences in spatial abilities start to emerge. In this study, children aged 8 to 11 reported their age and gender, completed a paper-and-pencil water-level task, and drew a map of their neighborhood to assess spontaneous choice of spatial frame of reference. Results showed a surprising lack of age or gender difference in water-level performance, but a significant effect of spatial frame of reference. Although they made up only a small portion of the sample, children who drew allocentric maps had the highest water-level score, with very high accuracy. These results suggest that children who adopt environmental-based reference frames when depicting their familiar environment may also use environmental-based reference frame strategies to solve spatial perception tasks, thereby facilitating highly accurate performance.


Assuntos
Percepção Espacial , Água , Criança , Humanos , Fatores Sexuais
6.
Exp Brain Res ; 238(9): 1911-1923, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556428

RESUMO

Both visual and body-based (vestibular and proprioceptive) information contribute to spatial updating, or the way a navigator keeps track of self-position during movement. Research has tested the relative contributions of these sources of information and found mixed results, with some studies demonstrating the importance of body-based information, especially for translation, and some demonstrating the sufficiency of visual information. Here, we invoke an individual differences approach to test whether some individuals may be more dependent on certain types of information compared to others. Movement experts tend to be dependent on motor processes in small-scale spatial tasks, which can help or hurt performance, but it is unknown if this effect extends into large-scale spatial tasks like spatial updating. In the current study, expert dancers and non-dancers completed a virtual reality point-to-origin task with three locomotion methods that varied the availability of body-based and visual information for translation: walking, joystick, and teleporting. We predicted decrements in performance in both groups as self-motion information was reduced, and that dancers would show a larger cost. Surprisingly, both dancers and non-dancers performed with equal accuracy in walking and joystick and were impaired in teleporting, with no large differences between groups. We found slower response times for both groups with reductions in self-motion information, and minimal evidence for a larger cost for dancers. While we did not see strong dance effects, more participation in spatial activities related to decreased angular error. Together, the results suggest a flexibility in reliance on visual or body-based information for translation in spatial updating that generalizes across dancers and non-dancers, but significant decrements associated with removing both of these sources of information.


Assuntos
Dança , Realidade Virtual , Humanos , Movimento , Propriocepção , Caminhada
7.
Atten Percept Psychophys ; 82(6): 3033-3047, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32346822

RESUMO

Spatial learning of real-world environments is impaired with severely restricted peripheral field of view (FOV). In prior research, the effects of restricted FOV on spatial learning have been studied using passive learning paradigms - learners walk along pre-defined paths and are told the location of targets to be remembered. Our research has shown that mobility demands and environmental complexity may contribute to impaired spatial learning with restricted FOV through attentional mechanisms. Here, we examine the role of active navigation, both in locomotion and in target search. First, we compared effects of active versus passive locomotion (walking with a physical guide versus being pushed in a wheelchair) on a task of pointing to remembered targets in participants with simulated 10° FOV. We found similar performance between active and passive locomotion conditions in both simpler (Experiment 1) and more complex (Experiment 2) spatial learning tasks. Experiment 3 required active search for named targets to remember while navigating, using both a mild and a severe FOV restriction. We observed no difference in pointing accuracy between the two FOV restrictions but an increase in attentional demands with severely restricted FOV. Experiment 4 compared active and passive search with severe FOV restriction, within subjects. We found no difference in pointing accuracy, but observed an increase in cognitive load in active versus passive search. Taken together, in the context of navigating with restricted FOV, neither locomotion method nor level of active search affected spatial learning. However, the greater cognitive demands could have counteracted the potential advantage of the active learning conditions.


Assuntos
Memória Espacial , Navegação Espacial , Atenção , Humanos , Aprendizagem Baseada em Problemas , Aprendizagem Espacial , Caminhada
8.
Cogn Res Princ Implic ; 4(1): 41, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641893

RESUMO

BACKGROUND: Previous research has found that spatial learning while navigating in novel spaces is impaired with extreme restricted peripheral field of view (FOV) (remaining FOV of 4°, but not of 10°) in an indoor environment with long hallways and mostly orthogonal turns. Here we tested effects of restricted peripheral field on a similar real-world spatial learning task in an art museum, a more challenging environment for navigation because of valuable obstacles and unpredictable paths, in which participants were guided along paths through the museum and learned the locations of pieces of art. At the end of each path, participants pointed to the remembered landmarks. Throughout the spatial learning task, participants completed a concurrent auditory reaction time task to measure cognitive load. RESULTS: Unlike the previous study in a typical hallway environment, spatial learning was impaired with a simulated 10° FOV compared to a wider 60° FOV, as indicated by greater average pointing error with restricted FOV. Reaction time to the secondary task also revealed slower responses, suggesting increased attentional demands. CONCLUSIONS: We suggest that the presence of a spatial learning deficit in the current experiment with this level of FOV restriction is due to the complex and unpredictable paths traveled in the museum environment. Our results also convey the importance of the study of low-vision spatial cognition in irregularly structured environments that are representative of many real-world settings, which may increase the difficulty of spatial learning while navigating.

9.
Psychol Res ; 83(7): 1349-1362, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29680863

RESUMO

In a series of experiments, we tested the hypothesis that severely degraded viewing conditions during locomotion distort the perception of distance traveled. Some research suggests that there is little-to-no systematic error in perceiving closer distances from a static viewpoint with severely degraded acuity and contrast sensitivity (which we will refer to as blur). However, several related areas of research-extending across domains of perception, attention, and spatial learning-suggest that degraded acuity and contrast sensitivity would affect estimates of distance traveled during locomotion. In a first experiment, we measured estimations of distance traveled in a real-world locomotion task and found that distances were overestimated with blur compared to normal vision using two measures: verbal reports and visual matching (Experiments 1 a, b, and c). In Experiment 2, participants indicated their estimate of the length of a previously traveled path by actively walking an equivalent distance in a viewing condition that either matched their initial path (e.g., blur/blur) or did not match (e.g., blur/normal). Overestimation in blur was found only when participants learned the path in blur and made estimates in normal vision (not in matched blur learning/judgment trials), further suggesting a reliance on dynamic visual information in estimates of distance traveled. In Experiment 3, we found evidence that perception of speed is similarly affected by the blur vision condition, showing an overestimation in perception of speed experienced in wheelchair locomotion during blur compared to normal vision. Taken together, our results demonstrate that severely degraded acuity and contrast sensitivity may increase people's tendency to overestimate perception of distance traveled, perhaps because of an increased perception of speed of self-motion.


Assuntos
Percepção de Distância/fisiologia , Locomoção/fisiologia , Baixa Visão/psicologia , Adolescente , Adulto , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Masculino , Velocidade de Caminhada/fisiologia , Adulto Jovem
10.
Exp Brain Res ; 235(11): 3307-3317, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803374

RESUMO

Monitoring one's safety during low vision navigation demands limited attentional resources which may impair spatial learning of the environment. In studies of younger adults, we have shown that these mobility monitoring demands can be alleviated, and spatial learning subsequently improved, via the presence of a physical guide during navigation. The present study extends work with younger adults to an older adult sample with simulated low vision. We test the effect of physical guidance on improving spatial learning as well as general age-related changes in navigation ability. Participants walked with and without a physical guide on novel real-world paths in an indoor environment and pointed to remembered target locations. They completed concurrent measures of cognitive load on the trials. Results demonstrate an improvement in learning under low vision conditions with a guide compared to walking without a guide. However, our measure of cognitive load did not vary between guidance conditions. We also conducted a cross-age comparison and found support for age-related declines in spatial learning generally and greater effects of physical guidance with increasing age.


Assuntos
Atenção/fisiologia , Desempenho Psicomotor/fisiologia , Aprendizagem Espacial/fisiologia , Navegação Espacial/fisiologia , Baixa Visão/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
PLoS One ; 11(10): e0163785, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760150

RESUMO

Recent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction. Second, we tested the hypothesis that navigation under these different levels of restriction would use additional attentional resources. Normally sighted participants walked on novel real-world paths wearing goggles that restricted the field-of-view (FOV) to severe (15°, 10°, 4°, or 0°) or mild angles (60°) and then pointed to remembered target locations using a verbal reporting measure. They completed a concurrent auditory reaction time task throughout each path to measure cognitive load. Only the most severe restrictions (4° and blindfolded) showed impairment in pointing error compared to the mild restriction (within-subjects). The 10° and 4° conditions also showed an increase in reaction time on the secondary attention task, suggesting that navigating with these extreme peripheral field restrictions demands the use of limited cognitive resources. This comparison of different levels of field restriction suggests that although peripheral field loss requires the actor to use more attentional resources while navigating starting at a less extreme level (10°), spatial memory is not negatively affected until the restriction is very severe (4°). These results have implications for understanding of the mechanisms underlying spatial learning during navigation and the approaches that may be taken to develop assistance for navigation with visual impairment.


Assuntos
Aprendizagem Espacial/fisiologia , Navegação Espacial/fisiologia , Campos Visuais , Adulto , Ansiedade/fisiopatologia , Cognição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...