Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456961

RESUMO

The molecular electron density theory (MEDT) was employed to examine the [4 + 2] cycloaddition reaction between (E)-N-((dimethylamino)methylene)benzothioamide (1) and (S)-3-acryloyl-4-phenyloxazolidin-2-one (2) at the B3LYP/6-311++G(d,p) design level. Parr functions and energy studies clearly show that this reaction is regio- and stereoselective, in perfect agreement with experimental results. By evaluating the chemical mechanism in terms of bond evolution theory (BET) and electron localization function (ELF), which divulges a variety of variations in the electron density along the reaction path, a single-step mechanism with highly asynchronous transition states structures was revealed. Additionally, we conducted a docking study on compounds P1, P2, P3, and P4 in the SARS-CoV-2 main protease (6LU7) in comparison to Nirmatrelvir. Our findings provide confirmation that product P4 may serve as a potent antiviral drug.

2.
Clinics (Sao Paulo) ; 79: 100344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552385

RESUMO

This controlled study investigated metabolic changes in non-vaccinated individuals with Long-COVID-19, along with their connection to the severity of the disease. The study involved 88 patients who experienced varying levels of initial disease severity (mild, moderate, and severe), and a control group of 29 healthy individuals. Metabolic risk markers from fasting blood samples were analyzed, and data regarding disease severity indicators were collected. Findings indicated significant metabolic shifts in severe Long-COVID-19 cases, mainly a marked drop in HDL-C levels and a doubled increase in ferritin levels and insulin resistance compared to the mild cases and controls. HDL-C and ferritin were identified as the leading factors predicted by disease severity. In conclusion, the decline in HDL-C levels and rise in ferritin levels seen in Long-COVID-19 individuals, largely influenced by the severity of the initial infection, could potentially play a role in the persistence and progression of Long-COVID-19. Hence, these markers could be considered as possible therapeutic targets, and help shape preventive strategies to reduce the long-term impacts of the disease.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , HDL-Colesterol , Fatores de Risco , Ferritinas , Gravidade do Paciente , Doença Crônica
3.
Clinics ; 79: 100344, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557581

RESUMO

Abstract This controlled study investigated metabolic changes in non-vaccinated individuals with Long-COVID-19, along with their connection to the severity of the disease. The study involved 88 patients who experienced varying levels of initial disease severity (mild, moderate, and severe), and a control group of 29 healthy individuals. Metabolic risk markers from fasting blood samples were analyzed, and data regarding disease severity indicators were collected. Findings indicated significant metabolic shifts in severe Long-COVID-19 cases, mainly a marked drop in HDL-C levels and a doubled increase in ferritin levels and insulin resistance compared to the mild cases and controls. HDL-C and ferritin were identified as the leading factors predicted by disease severity. In conclusion, the decline in HDL-C levels and rise in ferritin levels seen in Long-COVID-19 individuals, largely influenced by the severity of the initial infection, could potentially play a role in the persistence and progression of Long-COVID-19. Hence, these markers could be considered as possible therapeutic targets, and help shape preventive strategies to reduce the long-term impacts of the disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38052731

RESUMO

In this study, we explored aluminum corrosion inhibition field of study in a 1 M HCl solution, harnessing the power of essential oils extracted from rosemary and eucalyptus plants. Our exploration gives a comprehensive analysis of the pivotal factors that shape the corrosion inhibition process. Our scientific journey was marked by a deliberate and systematic approach, encompassing the utilization of gravimetric analysis (weight loss), electrochemical potentiodynamic polarization, and the sophisticated electrochemical impedance spectrometry (EIS) techniques. Our findings unveiled promising and nuanced outcomes, particularly in the area of the electrochemical technique. This method demonstrated remarkable inhibition efficiencies, ranging from 42% to an impressive 92% for rosemary essential oil and from 37 to 84% for eucalyptus essential oil. These results unveiled a dynamic relationship between essential oil concentration and inhibition efficiency, a revelation that further deepens our understanding of the corrosion inhibition process. The inhibition efficiency increased with higher concentrations of essential oil but decreased with elevated temperatures. Furthermore, our analysis traversed into the realms of potentiodynamic and thermodynamic insights. These analytical techniques unearthed the complex mechanisms at play, explaining the pathway followed by the studied inhibitors. They exhibited their prowess by forming protective films on the metal surface, acting as vigilant protectors against the relentless forces of corrosion. Complementing our experimental findings, our study of computational chemistry through density functional theory (DFT) unveiled remarkable insights. It elucidated the spontaneous adsorption process of inhibitor molecules onto the aluminum surface in the presence of H2O solvent. This computational harmony with our experimental results strengthened our confidence in the robustness of our findings. One of the key findings of this study was the superior inhibitory power of camphor in rosemary EO and ß-myrcene in eucalyptus essential oil EO, respectively, attributed to the distinctive characteristics of the active sites found in each compound. The inhibitory effectiveness followed the order ß-myrcene > camphor > borneol > α-pinene > bornyl acetate > p-cymene > 1,8-cineole. These compounds, notable for their distinct active sites, emerged as exceptional agents in the pursuit of effective corrosion inhibition.

5.
J Fluoresc ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668770

RESUMO

Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.

6.
J Mol Model ; 29(9): 280, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581864

RESUMO

CONTEXT: [3+2] cycloaddition processes between isoalantolactone (ISALL) and diazocyclopropane (DCYP), have been surveyed exercising the MEDT, reactivity indices, reactions, and activation energies, are computed. In an investigation of conceptual DFT indices, DCYP behaves as a nucleophile in this reaction, whereas ISALL acts as an electrophile. This cyclization is stereo-, chemo-, and regiospecific, as demonstrated by the activation and reaction energies, in clear agreement with the experiment's results. The mechanism for this [3+2] cycloaddition is occurring in two steps, according to ELF analysis. METHODS: For the purposes of this investigation, all computations were performed using the Gaussian 09 program. The optimization was completed using Berny's computational gradient optimization approach with the basis set 6-311G(d,p) and wB97XD functional. Frequency computations were utilized to characterize and locate stationary points where the transition phases have just one imaginary frequency and all frequencies for the reactants and products are positive. After evaluating the effect of dichloromethane (DCM) as a reaction solvent, the stationary point optimization was updated using the polarizable continuum model (PCM) developed by the Tomasi team. The electron localization function (ELF) has been examined within the context of topological investigations using Multiwfn software with a 0.05 grid step.

7.
Autism Res Treat ; 2022: 2313851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127178

RESUMO

OBJECTIVE: This study aimed at examining the effectiveness of treating children with autism spectrum disorder (ASD) who present with irritability, aggression, and disruptive behavior at the Sultan Qaboos University Hospital (SQUH) in Muscat, Oman, with risperidone, and to note any sex-based differences among this cohort. METHOD: This was a retrospective study conducted at the Department of Behavioral Medicine at SQUH over two years from January 2017 to December 2018. This study included all children aged 3 to 18 years attending the Child and Adolescent Mental Health Service (CAMHS) outpatient clinic with a diagnosis of ASD, based on the DSM-5 criteria, and comorbid disruptive behavior, who had been prescribed risperidone. RESULT: This study identified 95 ASD patients (72 males). Male patients' BMI score after 12 months of risperidone treatment showed an increase by 0.62 (1.57 SD; P=0.001); however, there was no significant change among female patients. Somnolence was noted in 69.6% of female patients as compared to 34.7% of males (P=0.003). Among those with a family history of ASD, 5 out of 17 patients had treatment success (29.4%), whereas 70 out of 78 patients (90.0%) who did not have a similar history had successful treatment. CONCLUSION: In conclusion, low-dose risperidone monotherapy is effective and well tolerated among some children with ASD who present with disruptive behavior in a naturalistic clinical setting. However, we found that some of the side effects, such as weight gain and somnolence, were concerning.

8.
J Mol Model ; 27(11): 331, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34713354

RESUMO

The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui's charge indicator, electron transfer, and chemical potential are all discussed. The presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491 H2O, nine chlorine ion Cl-, and nine hydronium ion H3O+, molecular dynamics and Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory and Monte Carlo and molecular dynamics descriptors obtained were in good agreement with the experimental result.

9.
J Mol Model ; 27(7): 197, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115227

RESUMO

In the current work, the chemical reactivity of some trivalent phosphorus derivatives R2PR' towards polyhaloalkanes CCl3POR ' '2 was studied by the quantum method DFT/B3LYP/6-311G(d,p). The introduction of substituents for the trivalent phosphorus derivative and polyhaloalkane allowed us to have more information on these reactions. On the one hand, the calculation of reactivity indices derived from the DFT/B3LYP/6-311G(d,p) method and the gapLUMO - HOMO show that trivalent organophosphorus derivatives behave as nucleophiles, while polyhaloalkanes act as electrophiles. On the other hand, the calculation of the activation barrier and the determination of the free enthalpy variation prove that the kinetic and thermodynamic products of these reactions result from the nucleophilic attack of the phosphorus atom on the chlorine halogen. All these theoretical predictions are in very good agreement with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA