Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 501326, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075242

RESUMO

The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.


Assuntos
Araceae/metabolismo , Nanopartículas/toxicidade , Níquel/toxicidade , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Relação Dose-Resposta a Droga
2.
Arch Environ Contam Toxicol ; 68(3): 510-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25392153

RESUMO

Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated in Lemna gibba plants exposed for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) at 0, 12.5, 25, 50, 100, 200 or 400 µg mL(-1). At < 400 µg mL(-1) of SPION exposure, toxicity was indicated by decrease of chlorophyll content, deterioration of photosystem II (PSII) functions, strong production of reactive oxygen species (ROS), and inhibition of growth rate based on fresh weight (52-59 %) or frond number (32-49 %). The performance index of PSII activity was the most sensitive biomarker of PSII functions and decreased by 83, 86, and 79 % for SPION-1, SPION-2, and SPION-3, respectively. According to the change of these biomarkers, the exposure of SPION suspensions to L. gibba caused several alterations to the entire plant cellular system, which may come from both the uptake of nanoparticles and metal ions in the soluble fraction. Our results, based on the change of several biomarkers, showed that these SPION have a complex toxic mode of action on the entire plant system and therefore affects its viability. Therefore, the plant model L. gibba was shown to be a sensitive bioindicator of SPION cellular toxicity and thus can be used in the development of a laboratory bioassay toxicity testing.


Assuntos
Araceae/efeitos dos fármacos , Compostos Férricos/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Biomed Res Int ; 2013: 647974, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369015

RESUMO

Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated on Chlorella vulgaris cells exposed during 72 hours to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) to a range of concentrations from 12.5 to 400 µg mL(-1). Under these treatments, toxicity impact was indicated by the deterioration of photochemical activities of photosynthesis, the induction of oxidative stress, and the inhibition of cell division rate. In comparison to SPION-2 and -3, exposure to SPION-1 caused the highest toxic effects on cellular division due to a stronger production of reactive oxygen species and deterioration of photochemical activity of Photosystem II. This study showed the potential source of toxicity for three SPION suspensions, having different chemical compositions, estimated by the change of different biomarkers. In this toxicological investigation, algal model C. vulgaris demonstrated to be a valuable bioindicator of SPION toxicity.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Divisão Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio
4.
Environ Toxicol Chem ; 32(4): 902-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23341248

RESUMO

The toxicity effect of silver nanoparticles (AgNPs) on growth and cellular viability was investigated on the aquatic plant Lemna gibba exposed over 7 d to 0, 0.01, 0.1, 1, and 10 mg/L of AgNPs. Growth inhibition was demonstrated by a significant decrease of frond numbers dependent on AgNP concentration. Under these conditions, reduction in plant cellular viability was detected for 0.1, 1, and 10 mg/L of AgNPs within 7 d of AgNPs treatment. This effect was highly correlated with the production of intracellular reactive oxygen species (ROS). A significant increase of intracellular ROS formation was triggered by 1 and 10 mg/L of AgNP exposure. The induced oxidative stress was related to Ag accumulation within L. gibba plant cells and with the increasing concentration of AgNP exposure in the medium. The authors' results clearly suggested that AgNP suspension represented a potential source of toxicity for L. gibba plant cells. Due to the low release capacity of free soluble Ag from AgNP dissolution in the medium, it is most likely that the intracellular uptake of Ag was directly from AgNPs, triggering cellular oxidative stress that may be due to the release of free Ag inside plant cells. Therefore, the present study demonstrated that AgNP accumulation in an aquatic environment may represent a potential source of toxicity and a risk for the viability of duckweeds.


Assuntos
Araceae/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...