Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(3): e1320-e1327, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883256

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne virus that is a rare cause of disease in humans. In the fall of 2020, a patient developed encephalitis 6 weeks following kidney transplantation and receipt of multiple blood transfusions. METHODS: After ruling out more common etiologies, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) was performed. We reviewed the medical histories of the index kidney recipient, organ donor, and recipients of other organs from the same donor and conducted a blood traceback investigation to evaluate blood transfusion as a possible source of infection in the kidney recipient. We tested patient specimens using reverse-transcription polymerase chain reaction (RT-PCR), the plaque reduction neutralization test, cell culture, and whole-genome sequencing. RESULTS: CVV was detected in CSF from the index patient by mNGS, and this result was confirmed by RT-PCR, viral culture, and additional whole-genome sequencing. The organ donor and other organ recipients had no evidence of infection with CVV by molecular or serologic testing. Neutralizing antibodies against CVV were detected in serum from a donor of red blood cells received by the index patient immediately prior to transplant. CVV neutralizing antibodies were also detected in serum from a patient who received the co-component plasma from the same blood donation. CONCLUSIONS: Our investigation demonstrates probable CVV transmission through blood transfusion. Clinicians should consider arboviral infections in unexplained meningoencephalitis after blood transfusion or organ transplantation. The use of mNGS might facilitate detection of rare, unexpected infections, particularly in immunocompromised patients.


Assuntos
Vírus Bunyamwera , Transplante de Rim , Meningoencefalite , Humanos , Anticorpos Neutralizantes , Transfusão de Sangue , Transplante de Rim/efeitos adversos , Meningoencefalite/diagnóstico
2.
Waste Manag ; 43: 61-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26174354

RESUMO

The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water.


Assuntos
Resíduos Industriais/análise , Olea/química , Solo , Biodegradação Ambiental , Biomassa , Calibragem , Celulose/química , Indústria Alimentícia , Umidade , Peróxido de Hidrogênio/química , Hidrólise , Cinética , Lignina/química , Modelos Teóricos , Oxigênio/química , Consumo de Oxigênio , Reprodutibilidade dos Testes , Temperatura , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...