Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 61(6): 611-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21751578

RESUMO

The objective of this research was to develop a multiobjective optimization model to deploy emissions reduction technologies for nonroad construction equipment to reduce emissions in a cost-effective and optimal manner. Given a fleet of construction equipment emitting different pollutants in the nonattainment (NA) and near -nonattainment (NNA) counties of a state and a set of emissions reduction technologies available for installation on equipment to control pollution/emissions, the model assists in determining the mix of technologies to be deployed so that maximum emissions reduction and fuel savings are achieved within a given budget. Three technologies considered for emissions reduction were designated as X, Y, and Z to keep the model formulation general so that it can be applied for any other set of technologies. Two alternative methods of deploying these technologies on a fleet of equipment were investigated with the methods differing in the technology deployment preference in the NA and NNA counties. The model having a weighted objective function containing emissions reduction benefits and fuel-saving benefits was programmed with C++ and ILOG-CPLEX. For demonstration purposes, the model was applied for a selected construction equipment fleet owned by the Texas Department of Transportation, located in NA and NNA counties of Texas, assuming the three emissions reduction technologies X, Y, and Z to represent, respectively, hydrogen enrichment, selective catalytic reduction, and fuel additive technologies. Model solutions were obtained for varying budget amounts to test the sensitivity of emissions reductions and fuel-savings benefits with increasing the budget. Different mixes of technologies producing maximum oxides of nitrogen (NO(x)) reductions and total combined benefits (emissions reductions plus fuel savings) were indicated at different budget ranges. The initial steep portion of the plots for NO(x) reductions and total combined benefits against budgets for different combinations of emissions reduction technologies indicated a high benefit-cost ratio at lower budget amounts. The rate of NO(x) reductions and the increase of combined benefits decreased with increasing the budget, and with the budget exceeding certain limits neither further NO(x) reductions nor increased combined benefits were observed. Finally, the Pareto front obtained would enable the decision-maker to achieve a noninferior optimal combination of total NO(x) reductions and fuel-savings benefits for a given budget.


Assuntos
Meio Ambiente , Desenho de Equipamento , Modelos Teóricos , Veículos Automotores , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle , Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Desenho de Equipamento/economia , Gasolina/economia , Modelos Econômicos , Saúde Pública , Texas
2.
J Air Waste Manag Assoc ; 58(5): 613-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18512437

RESUMO

The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.


Assuntos
Combustíveis Fósseis/análise , Gases/análise , Eliminação de Resíduos , Eletricidade , Estudos de Viabilidade , Combustíveis Fósseis/economia , Eliminação de Resíduos/economia , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...