Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(2): 413-420, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673523

RESUMO

The Australian continent was free from wheat stripe rust caused by Puccinia striiformis f. sp. tritici until exotic incursions occurred in 1979 and 2002. The 2002 incursion enabled the identification of a new stripe rust resistance gene (Yr34) in the advanced breeding line WAWHT2046. In this study, we developed and validated markers closely linked with Yr34, which is located in the distal region in the long arm of chromosome 5A. Four kompetitive allele-specific polymerase chain reaction (KASP) and three sequence-tagged site (STS) markers derived from the International Wheat Genome Sequencing Consortium RefSeq v1.0 scaffold-77836 cosegregated with Yr34. Markers sun711, sun712, sun725, sunKASP_109, and sunKASP_112 were shown to be suitable for marker-assisted selection in a validation panel of 71 Australian spring wheat genotypes, with the exception of cultivar Orion that carried the Yr34-linked alleles for sunKASP_109 and sunKASP_112. Markers previously reported to be linked with adult plant stripe rust resistance gene Yr48 also cosegregated with Yr34. Wheat genotypes carrying Yr34 and Yr48 produced identical haplotypes for the Yr34-linked markers identified in this study and those previously reported to be linked with Yr48. Phenotypic testing of genotypes carrying Yr34 and Yr48 showed that both genes conferred similar seedling responses to pre-2002 and post-2002 P. striiformis f. sp. tritici pathotypes. Further testing of 600 F2 plants from a cross between WAWHT2046 and RIL143 (Yr48) with P. striiformis f. sp. tritici pathotype 134 E16A+Yr17+Yr27+ failed to reveal any susceptible segregants. Our results strongly suggest that Yr34 and Yr48 are the same gene, and that Yr48 should be considered a synonym of Yr34.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Austrália , Mapeamento Cromossômico , Marcadores Genéticos/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
2.
Plant Dis ; 99(4): 508-511, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30699549

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici W., is a devastating disease of wheat worldwide. A new stripe rust resistance gene with moderate seedling and adult plant resistance was mapped using an F5 recombinant inbred line (RIL) population developed from the cross of the resistant parent 'Almop' with the susceptible parent 'Avocet'. The parents and RILs were phenotyped for seedling stripe rust response variation in a greenhouse and in field trials at Toluca, Mexico for 2 years. Almop showed moderate levels of resistance at both seedling and adult plant stages compared with the highly susceptible response of Avocet. The distribution of homozygous resistant, homozygous susceptible, and segregating RILs conformed to segregation at a single locus. Seedlings and adult plant responses were correlated, indicating that the same gene conferred resistance at both stages. A bulk segregant analysis approach with widely distributed simple sequence repeat (SSR) markers mapped the resistance gene to the distal region of the long arm of chromosome 4A. The SSR marker wmc776 cosegregated with this gene, whereas markers wmc219 and wmc313 were tightly linked and both located at 0.6 centimorgans. The resistance locus was designated Yr60.

3.
Theor Appl Genet ; 126(10): 2467-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23807636

RESUMO

Two bread wheat lines each with a translocation on chromosome 7DL from either Thinopyrum intermedium (TC5 and TC14) or Thinopyrum ponticum (T4m), were hybridized in a ph1b mutant background to enhance recombination between the two translocated chromosomal segments. The frequency of recombinants was high in lines derived from the larger and similar-sized translocations (TC5/T4m), but much lower when derived from different-sized translocations (TC14/T4m). Recombinant translocations contained combinations of resistance genes Bdv2, Lr19 and Sr25 conferring resistance to Barley yellow dwarf virus (BYDV), leaf rust and stem rust, respectively. Their genetic composition was identified using bioassays and molecular markers specific for the two progenitor Thinopyrum species. This set of 7DL Th. ponticum/intermedium recombinant translocations was termed the Pontin series. In addition to Thinopyrum markers, the size of the translocation was estimated with the aid of wheat markers mapped on each of the 7DL deletion bins. Bioassays for BYDV, leaf rust and stem rust were performed under greenhouse and field conditions. Once separated from ph1b background, the Pontin recombinant translocations were stable and showed normal inheritance in successive backcrosses. The reported Pontin translocations integrate important resistance genes in a single linkage block which will allow simultaneous selection of disease resistance. Combinations of Bdv2 + Lr19 or Lr19 + Sr25 in both long and short translocations, are available to date. The smaller Pontins, comprising only 20 % of the distal portion of 7DL, will be most attractive to breeders.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Poaceae/genética , Recombinação Genética/genética , Translocação Genética , Triticum/genética , Bioensaio , Pão , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Marcadores Genéticos , Luteovirus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Triticum/microbiologia , Triticum/virologia
4.
Theor Appl Genet ; 122(8): 1461-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21344185

RESUMO

Two Iranian common wheat landraces AUS28183 and AUS28187 from the Watkins collection showed high levels of seedling resistance against Australian pathotypes of leaf rust and stripe rust pathogens. Chi-squared analyses of rust response segregation among F(3) populations derived from crosses of AUS28183 and AUS28187 with a susceptible genotype AUS27229 revealed monogenic inheritance of leaf rust and stripe rust resistance. As both genotypes produced similar leaf rust and stripe rust infection types, they were assumed to carry the same genes. The genes were temporarily named as LrW1 and YrW1. Molecular mapping placed LrW1 and YrW1 in the short arm of chromosome 5B, about 10 and 15 cM proximal to the SSR marker gwm234, respectively, and the marker cfb309 mapped 8-12 cM proximal to YrW1. LrW1 mapped 3-6 cM distal to YrW1 in two F(3) populations. AUS28183 corresponded to the accession V336 of the Watkins collection which was the original source of Lr52. Based on the genomic location and accession records, LrW1 was concluded to be Lr52. Because no other seedling stripe rust resistance gene has previously been mapped in chromosome 5BS, YrW1 was permanently named as Yr47. A combination of flanking markers gwm234 and cfb309 with phenotypic assays could be used to ascertain the presence of Lr52 and Yr47 in segregating populations. This investigation characterised a valuable source of dual leaf rust and stripe rust resistance for deployment in new wheat cultivars. Transfer of Lr52 and Yr47 into current Australian wheat backgrounds is in progress.


Assuntos
Basidiomycota , Genes de Plantas/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Triticum/genética , Mapeamento Cromossômico , Irã (Geográfico) , Doenças das Plantas/genética , Plântula/genética , Plântula/microbiologia , Triticum/microbiologia
5.
Theor Appl Genet ; 119(8): 1441-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756473

RESUMO

The use of major resistance genes is a cost-effective strategy for preventing stem rust epidemics in wheat crops. The stem rust resistance gene Sr39 provides resistance to all currently known pathotypes of Puccinia graminis f. sp. tritici (Pgt) including Ug99 (TTKSK) and was introgressed together with leaf rust resistance gene Lr35 conferring adult plant resistance to P. triticina (Pt), into wheat from Aegilops speltoides. It has not been used extensively in wheat breeding because of the presumed but as yet undocumented negative agronomic effects associated with Ae. speltoides chromatin. This investigation reports the production of a set of recombinants with shortened Ae. speltoides segments through induction of homoeologous recombination between the wheat and the Ae. speltoides chromosome. Simple PCR-based DNA markers were developed for resistant and susceptible genotypes (Sr39#22r and Sr39#50s) and validated across a set of recombinant lines and wheat cultivars. These markers will facilitate the pyramiding of ameliorated sources of Sr39 with other stem rust resistance genes that are effective against the Pgt pathotype TTKSK and its variants.


Assuntos
Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Basidiomycota/fisiologia , Cromossomos de Plantas , Marcadores Genéticos , Plantas Geneticamente Modificadas/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Triticum/microbiologia
6.
Theor Appl Genet ; 117(3): 307-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18542911

RESUMO

Hypersensitive adult plant resistance genes Lr48 and Lr49 were named based on their genetic independence of the known adult plant resistance genes. This study was planned to determine genomic locations of these genes. Recombinant inbred line populations derived from crosses involving CSP44 and VL404, sources of Lr48 and Lr49, respectively, and the susceptible parent WL711, were used to determine the genomic locations of these genes. Bulked segregant analyses were performed using multiplex-ready PCR technology. Lr48 in genotype CSP44 was mapped on chromosome arm 2BS flanked by marker loci Xgwm429b (6.1 cM) and Xbarc7 (7.3 cM) distally and proximally, respectively. Leaf rust resistance gene Lr13, carried by the alternate parent WL711, was proximal to Lr48 and was flanked by Xksm58 (5.1 cM) and Xstm773-2 (8.7 cM). Lr49 was flanked by Xbarc163 (8.1 cM) and Xwmc349 (10.1 cM) on chromosome arm 4BL. The likely presence of the durable leaf rust resistance gene Lr34 in both CSP44 and VL404 was confirmed using the tightly linked marker csLV34. Near-isogenic lines for Lr48 and Lr49 were developed in cultivar Lal Bahadur. Genotypes combining Lr13 and/or Lr34 with Lr48 or Lr49 were identified as potential donor sources for cultivar development programs.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Imunidade Inata/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Triticum/genética , Alelos , Segregação de Cromossomos , Ligação Genética , Endogamia , Padrões de Herança/genética , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase
7.
Theor Appl Genet ; 116(1): 63-75, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17906848

RESUMO

Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F(2), F(3) and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F(2) populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermedium-Th. ponticum translocations (Pontin series) in breeding programs.


Assuntos
Doenças das Plantas/genética , Poaceae/genética , Recombinação Genética , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , DNA de Plantas/genética , Doenças das Plantas/virologia , Triticum/virologia
8.
Theor Appl Genet ; 114(1): 21-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17008991

RESUMO

Wheat expressed sequence tags (wESTs) were identified in a genomic interval predicted to span the Lr34/Yr18 slow rusting region on chromosome 7DS and that corresponded to genes located in the syntenic region of rice chromosome 6 (between 2.02 and 2.38 Mb). A subset of the wESTs was also used to identify corresponding bacterial artificial chromosome (BAC) clones from the diploid D genome of wheat (Aegilops tauschii). Conservation and deviation of micro-colinearity within blocks of genes were found in the D genome BACs relative to the orthologous sequences in rice. Extensive RFLP analysis using the wEST derived clones as probes on a panel of wheat genetic stocks with or without Lr34/Yr18 revealed monomorphic patterns as the norm in this region of the wheat genome. A similar pattern was observed with single nucleotide polymorphism analysis on a subset of the wEST derived clones and subclones from corresponding D genome BACs. One exception was a wEST derived clone that produced a consistent RFLP pattern that distinguished the Lr34/Yr18 genetic stocks and well-established cultivars known either to possess or lack Lr34/Yr18. Conversion of the RFLP to a codominant sequence tagged site (csLV34) revealed a bi-allelic locus, where a variant size of 79 bp insertion in an intron sequence was associated with lines or cultivars that lacked Lr34/Yr18. This association with Lr34/Yr18 was validated in wheat cultivars from diverse backgrounds. Genetic linkage between csLV34 and Lr34/Yr18 was estimated at 0.4 cM.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Fenótipo , Polimorfismo de Fragmento de Restrição , Triticum/fisiologia
9.
Theor Appl Genet ; 112(6): 1143-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16435125

RESUMO

An uncharacterized source of seedling resistance to Puccinia striiformis f.sp. tritici was identified in an advanced wheat breeding line WAWHT2046. Genetic analysis based on a WAWHT2046/Carnamah-derived double haploid (DH) population demonstrated monogenic inheritance of seedling stripe rust resistance in WAWHT2046. The gene controlling stripe rust resistance in line WAWHT2046 was tentatively designated YrWA. The chromosome 5AL located awn inhibitor gene B1, possessed by WAWHT2046, also showed monogenic inheritance when the DH population was scored for the presence and absence of awns. Joint segregation analysis at the B1 and YrWA loci indicated genetic linkage between the two loci. A recombination value of 12.2 cM was computed using Mapmanager. This association located YrWA in the chromosome arm 5AL. Molecular mapping using microsatellite markers placed YrWA distal to B1. All molecular markers mapped proximal to the awn inhibitor locus B1. As no other stripe rust resistance gene is reported to be located in the chromosome arm 5AL, YrWA was permanently designated as Yr34. Yr34 produced an intermediate (23C) seedling infection type and expressed very low stripe rust response (10R-MR) on adult plants in the field, similar to the resistance gene Yr17. In addition to Yr34, this mapping population segregated for three genetically independent adult plant stripe rust resistance genes. The detection of DH lines with completely susceptible response, higher than that shown by the Yr34-lacking parent Carnamah, suggested that both parents contributed adult plant resistance. The use of WAWHT2046 as a parent in breeding programs would also contribute APR in addition to Yr34.


Assuntos
Marcadores Genéticos , Imunidade Inata/genética , Doenças das Plantas/genética , Polimorfismo Genético , Triticum/genética , Mapeamento Cromossômico , Ligação Genética , Doenças das Plantas/microbiologia , Especificidade da Espécie
10.
Theor Appl Genet ; 112(1): 41-50, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16283230

RESUMO

The stem, leaf and stripe rust resistance genes Sr31, Lr26 and Yr9, located on the short arm of rye chromosome 1, have been widely used in wheat by means of wheat-rye translocation chromosomes. Previous studies have suggested that these resistance specificities are encoded by either closely-linked genes, or by a single gene capable of recognizing all three rust species. To investigate these issues, two 1BL.1RS wheat lines, one with and one without Sr31, Lr26 and Yr9, were used as parents for a high-resolution F2 mapping family. Thirty-six recombinants were identified between two PCR markers 2.3 cM apart that flanked the resistance locus. In one recombinant, Lr26 was separated from Sr31 and Yr9. Mutation studies recovered mutants that separated all three rust resistance genes. Thus, together, the recombination and mutation studies suggest that Sr31, Lr26 and Yr9 are separate closely-linked genes. An additional 16 DNA markers were mapped in this region. Multiple RFLP markers, identified using part of the barley Mla powdery mildew resistance gene as probe, co-segregated with Sr31 and Yr9. One deletion mutant that had lost Sr31, Lr26 and Yr9 retained all Mla markers, suggesting that the family of genes on 1RS identified by the Mla probe does not contain the Sr31, Lr26 or Yr9 genes. The genetic stocks and DNA markers generated from this study should facilitate the future cloning of Sr31, Lr26 and Yr9.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Análise Mutacional de DNA , Genes de Plantas , Doenças das Plantas , Secale/genética , Ligação Genética , Marcadores Genéticos , Imunidade Inata , Oryza/genética , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Triticum/genética
11.
Theor Appl Genet ; 111(5): 846-50, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16025305

RESUMO

Stem rust caused by Puccinia graminis f. sp. tritici Eriks and Henn and leaf rust caused by Puccinia triticina Rob. ex Desm. are major constraints to wheat production worldwide. In the present study, F(4)-derived SSD population, developed from a cross between Australian cultivars 'Schomburgk' and 'Yarralinka', was used to identify molecular markers linked to rust resistance genes Lr 3 a and Sr 22. A total of 1,330 RAPD and 100 ISSR primers and 33 SSR primer pairs selected ob the basis of chromosomal locations of these genes were used. The ISSR marker UBC 840(540) was found to be linked with Lr 3 a in repulsion at a distance of 6.0 cM. Markers cfa 2019 and cfa 2123 flanked Sr 22 at a distance of 5.9 cM (distal) and 6.0 cM (proximal), respectively. The use of these markers in combination would predict the presence or absence of Sr 22 in breeding populations. A previously identified PCR-based diagnostic marker STS 638 linked to Lr 20 was validated in this population. This marker showed a recombination value of 7.1 cM with Lr 20.


Assuntos
Basidiomycota/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Triticum/microbiologia , Austrália , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Imunidade Inata
12.
Theor Appl Genet ; 111(3): 496-504, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15918008

RESUMO

The use of major resistance genes is the most cost-effective strategy for preventing stem rust epidemics in Australian wheat crops. The long-term success of this strategy is dependent on combining resistance genes that are effective against all predominant races of the pathogen, a task greatly assisted by the use of molecular markers linked to individual resistance genes. The wheat stem rust resistance genes Sr24 and Sr26 (derived from Agropyron elongatum) and SrR and Sr31 (derived from rye) are available in wheat as segments of alien chromosome translocated to wheat chromosomes. Each of these genes provides resistance to all races of wheat stem rust currently found in Australia . We have developed robust PCR markers for Sr24 and Sr26 (this study) and SrR and Sr31 (previously reported) that are applicable across a wide selection of Australian wheat germplasm. Wheat lines have recently become available in which the size of the alien segments containing Sr26, SrR and Sr31 has been reduced. Newly developed PCR-markers can be used to identify the presence of the shorter alien segment in all cases. Assuming that these genes have different gene-for-gene specificities and that the wheat industry will discourage the use of varieties carrying single genes only, the newly developed PCR markers will facilitate the incorporation of two or more of the genes Sr24, Sr26, SrR and Sr31 into wheat lines and have the potential to provide durable control to stem rust in Australia and elsewhere.


Assuntos
Basidiomycota , Marcadores Genéticos/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Triticum/genética , Alelos , Primers do DNA , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Sitios de Sequências Rotuladas
13.
Theor Appl Genet ; 104(2-3): 315-320, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12582703

RESUMO

Stripe rust resistance was identified in Triticum vavilovii( T. vaviloviiAus22498)-derived Russian wheat aphid (RWA)-resistant germplasm. Inheritance studies indicated monogenic control of resistance. The resistance gene was tentatively designated as Yrvav and was located on chromosome 1B by monosomic analysis. A close association (1.5+/-0.9% recombination) of Yrvav with a T. vavilovii-derived gliadin allele ( Gli-B1vav) placed it in chromosome arm 1BS. Yrvavwas allelic with Yr10. Tests with Yr10 avirulent and virulent pathotypes showed that Yrvav and Yr10 possess identical pathogenic specificity. Yrvav and Yr10 showed close genetic associations with alternate alleles at the Xpsp3000(microsatellite marker), Gli-B1 and Rg1 loci. Based on these observations Yrvav was named as Yr10vav. The close association between Xpsp3000 and Gli-B1 was also confirmed. The Yr10vav-linked Xpsp3000 allele (285 bp) was not present in 65 Australian cultivars, whereas seven Australian wheats lacking Yr10 carried the same Xpsp3000 allele (260 bp) as Yr10carrying wheat cultivar Moro. Xpsp3000 and/or Gli-B1 could be used in marker-assisted selection for pyramiding Yr10vavor Yr10 with other stripe rust resistance genes. Yr10vav was inherited independently of the T. vavilovii-derived RWA resistance.

14.
Mol Ecol ; 7(11): 1489-95, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9819903

RESUMO

To obtain a set of microsatellite markers for the Queensland fruit fly Bactrocera tryoni, a genomic library was screened with a number of simple repeat oligonucleotide probes. Sequencing recovered 22 repeat loci. The microsatellite sequences were short, with repeat numbers ranging from five to 11. Of these, 16 polymerase chain reaction (PCR) primer sets yielded amplifiable products, which were tested on 53 flies from five widely separated sites. All loci showed polymorphism in the population sample, with the number of alleles ranging from two to 16. Several dinucleotide repeats showed alleles separated by single-base differences and multiple steps, suggesting a mutation process more complex than the stepwise mutation model.


Assuntos
Dípteros/genética , Repetições de Microssatélites , Alelos , Animais , Sequência de Bases , Primers do DNA/genética , Ecossistema , Frequência do Gene , Genética Populacional , Reação em Cadeia da Polimerase , Polimorfismo Genético , Queensland
15.
Genome ; 38(2): 395-405, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18470178

RESUMO

Barley yellow dwarf virus (BYDV) resistance has been transferred to wheat from a group 7 chromosome of Thinopyrum (Agropyron) intermedium. The source of the resistance gene was the L1 disomic addition line, which carries the 7Ai-1 chromosome. The resistance locus is on the long arm of this chromosome. BYDV resistant recombinant lines were identified after three or more generations of selection against a group 7 Th. intermedium short arm marker (red coleoptile) and selection for the presence of BYDV resistance. One recombinant line produced by ph. mutant induced homoeologous pairing and 14 recombinant lines induced by cell culture have been identified. Resistance in seven of the cell culture induced recombinants has been inherited via pollen according to Mendelian segregation ratios for up to eight generations. Meiotic analysis of heterozygotes indicates that the alien chromatin in the cell culture induced recombinants is small enough to allow regular meiotic behaviour. The ph-induced recombinant was less regular in meiosis. A probe, pEleAcc2, originally isolated from Th. elongatum and that hybridizes to dispersed repeated DNA sequences, was utilised to detect Th. intermedium chromatin, which confers resistance to BYDV, in wheat backgrounds. Quantification of these hybridization signals indicated that the translocations involved a portion of alien chromatin that was smaller than the complete long arm of 7Ai-1. Restriction fragment length polymorphism analysis confirmed the loss of the short arm of 7Ai-1 and indicated the retention of segments of the long arm of 7Ai-1. Two 7Ai-1L DNA markers always assorted with the BYDV resistance. A third 7Ai-IL DNA marker was also present in seven of eight recombinants. In all recombinants except TC7, the 7Ai-1L markers replaced the 7DL markers. None of the wheat group 7 markers was missing from TC7. It is concluded that all the resistant lines are the result of recombination with wheat chromosome 7D, except line TC7, which is the result of recombination with an unidentified nongroup 7 chromosome.

16.
Genome ; 36(3): 476-82, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18470001

RESUMO

Inheritance studies showed that the VPM1-derived seedling resistances to stem rust, stripe rust, leaf rust, and powdery mildew were controlled by single genes; the genes for rust resistance were designated Sr38, Yr17, and Lr37, respectively, whereas the gene for resistance to powdery mildew was postulated to be Pm4b. Sr38, Yr17, and Lr37 were shown to be closely linked and distally located in the short arm of chromosome 2A. They showed very close repulsion linkage with Lr17 and were genetically independent of other genes known to be located in chromosome 2A. Previously unmapped, Yr1 appeared to be distally located in the long arm of chromosome 2A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...