Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4139-4155, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38924768

RESUMO

Extracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently. The small RNA sequencing of EVs revealed that miR-204-5p, miR-221-3p, and miR-148a-3p are among the highly upregulated miRNAs that have an inhibitory effect on the function of mRNAs, Sox11, Timp3, and Ccna2 in host cells, which is probably responsible for enhancing the activity of osteoblastic genes. To enhance the bioavailability of EVs, they are encapsulated in a chitosan-collagen composite hydrogel that serves as a bioresorbable extracellular matrix (ECM). The EVs-integrated scaffold (DM-EVs + Scaffold) enhances bone regeneration in critical-sized calvarial bone defects in rats within 8 weeks of implantation by providing the ECM cues. The shelf life of DM-EVs + Scaffold indicates that the bioactivity of EVs and their cargo in the polymer matrix remains intact for up to 30 days. Integrating mineralized cell-derived EVs into an ECM represents a bioresorbable matrix with a cell-free method for promoting new bone formation through the miRNA-mRNA regulatory axis.


Assuntos
Regeneração Óssea , Matriz Extracelular , Vesículas Extracelulares , MicroRNAs , Osteoblastos , RNA Mensageiro , Regeneração Óssea/efeitos dos fármacos , Animais , MicroRNAs/genética , Osteoblastos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ratos , Camundongos , Matriz Extracelular/metabolismo , RNA Mensageiro/genética , Diferenciação Celular , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Polissacarídeos/química , Ratos Sprague-Dawley , Masculino
2.
ACS Omega ; 9(16): 17891-17902, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680357

RESUMO

Matrix elasticity helps to direct bone cell differentiation, impact healing processes, and modify extracellular matrix deposition, all of which are required for tissue growth and maintenance. In this work, we evaluated the role of inorganic nanocrystals or mineral inducers such as nanohydroxyapatite, alkaline phosphatase, and nanoclay also known as montmorillonite deposited on vinyl-based hydrogels in generating matrices with different stiffness and their role in cell differentiation. Poly-2-(dimethylamino)ethyl methacrylate (PD) and poly-2-hydroxypropylmethacrylamide (PH) are the two types of vinyl polymers chosen for preparing hydrogels via thermal cross-linking. The hydrogels exhibited porosity, which decreased with an increase in stiffness. Each of the compositions is non-cytotoxic and maintains the viability of pre-osteoblasts (MC3T3-E1) and human bone marrow mesenchymal stem cells (hBMSCs). The PD hydrogels in the presence of ALP showed the highest mineralization ability confirmed through the alizarin assay and a better structural environment for their use as scaffolds for tissue engineering. The study reveals that understanding such interactions can generate hydrogels that can serve as efficient 3D models to study biomineralization.

3.
Adv Healthc Mater ; 12(32): e2301959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712303

RESUMO

Glycoproteins are gaining prominence as multifunctional biomaterials. The study reports development of glycoprotein mucin as biomaterial promoting bone regeneration. Mucin 1 deletion has resulted in stiffer femoral bones with scarce presence of osteoblasts in trabecular linings and its role has been established in determining bone mass and mineralization. Limited information about its structure limits its processability, exploration as biomaterial, which is discussed in this study. The role of mucin in ECM (extracellular cellular matrix) formation validated by RNA sequencing analysis of human bone marrow derived mesenchymal stem cells is reported. The structure and stability of mucins is dependent on the presence of glycans in its structure. A thermosensitive hydrogel acquired from thermosensitive Poly (N-isopropyl acrylamide)-(PNIPAM) modified mucin and collagen is developed. The hydrogel demonstrates porous structure and mechanical strength. Newly formed bone tissue is observed at 8 weeks post-implantation in the hydrogel treated groups. The formation of blood vessels, nerves, and bone is observed with upregulation of angiopoietin (ANG), neurofilament heavy chain (NF-H), and osteoadherin (OSAD) or osteocalcin (OCN) respectively in rat calvarial defects. The outcome demonstrates that the thermosensitive injectable hydrogel accelerates repair and healing in calvarial bone defects making it a promising biodegradable biomaterial capable of regenerating bone by promoting angiogenesis and innervation.


Assuntos
Angiogênese , Hidrogéis , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Glicoproteínas/farmacologia , Mucinas
4.
Sci Rep ; 13(1): 16116, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752330

RESUMO

Calvarial craniotomy in animal models involves pain and distress. Moderate to severe pain in laboratory animals requires adequate pain management strategies. According to previous studies, the options available for suitable analgesia for rat calvarial craniotomy are very few. For most analgesic treatments, injectable routes of administration are predominantly used. However, these routes require restraining the animals, which may cause unnecessary pain, distress and suffering. As a well-fare measure, we focused on pain management by oral administration of analgesia. In this particular study, which is a sub-study of a major experiment on bone regeneration with different polymeric scaffold materials, we have compared the analgesic efficacy of intraperitoneal (I/P) and oral administration of tramadol (10 mg/kg) over a period of 96 h post-surgery in rat craniotomy models. The focus of our study is to evaluate the potential pain reduction efficacy of orally administered Tramadol without any restraining involved. We have used various non-invasive methods to assess the pain-alleviating efficacy of tramadol administered through different methods. We found that the efficacy of oral administration of tramadol is comparable to I/P administration in alleviating pain. Additionally, oral administration through drinking water has the benefit of not putting the animal under unwanted restraining stress.


Assuntos
Analgesia , Craniotomia , Dor Pós-Operatória , Tramadol , Animais , Ratos , Analgesia/métodos , Analgesia/veterinária , Craniotomia/efeitos adversos , Craniotomia/veterinária , Manejo da Dor/métodos , Manejo da Dor/veterinária , Tramadol/administração & dosagem , Administração Oral , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/veterinária , Modelos Animais
5.
J Pharm Sci ; 110(12): 3757-3772, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474062

RESUMO

The need for bone repair and insight into new regeneration therapies as well as improvement of existing regeneration routes is constantly increasing as a direct consequence of the rise in the number of trauma victims, musculoskeletal disorders, and increased life expectancy. Bisphosphonates (BPs) have emerged as a class of drugs with proven efficacy against many bone disorders. The most recent ability of this class of drugs is being explored in its anti-cancer ability. However, despite the pharmacological success, there are certain shortcomings that have circumvented this class of the drug. The mediation of biomaterials in delivering bisphosphonates has greatly helped in overcoming some of these shortcomings. This article is focused on reviewing the benefits the bisphosphonates have provided upon getting delivered via the use of biomaterials. Furthermore, the role of bisphosphonates as a potent anticancer agent is also accounted. It is witnessed that employing engineering tools in combination with therapeutics has the potential to provide solutions to bone loss from degenerative, surgical, or traumatic processes, and also aid in accelerating the healing of large bone fractures and problematic non-union fractures. The role of nanotechnology in enhancing the efficacy of the bisphosphonates is also reviewed and innovative approaches are identified.


Assuntos
Materiais Biocompatíveis , Difosfonatos , Cicatrização
6.
Macromol Biosci ; 21(6): e2000381, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871165

RESUMO

Biomimetic matrices offer a great advantage to understand several biological processes including regeneration. The study involves the development of a hybrid biomimetic scaffold and the uniqueness lies in the use of mucin, as a constituent protein. Through this study, the role of the protein in bone regeneration is deciphered through its development as a 3D model. As a first step towards understanding the protein, the interactions of mucin and collagen are determined by in silico studies considering that collagen is the most abundant protein in the bone microenvironment. Both proteins are reported to be involved in bone biology though the exact role of mucin is a topic of investigation. The in silico studies of collagen-mucin suggest to have a proper affinity toward each other, forming a strong basis for 3D scaffold development. The developed 3D scaffold is a double network system comprising of mucin and collagen and vinyl end functionalized polyethylene glycol. In situ deposition of mineral crystals has been performed enzymatically. Biological evaluation of these mineral deposited scaffolds is done in terms of their bone regeneration potential and a comparison of the two systems with and without mineral deposition is presented.


Assuntos
Osso e Ossos/efeitos dos fármacos , Colágeno/química , Mucinas/química , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biomiméticos , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/genética , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Colágeno/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacologia , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Polímeros/metabolismo , Polímeros/farmacologia , Ligação Proteica , Ratos
7.
RSC Adv ; 11(48): 30329-30342, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480259

RESUMO

The role of polymers has played a crucial role in developing templates that can promote regeneration as tissue-engineered matrices. The present study aims to develop functional matrices involving the protein mucin. The mucin used in this study is characterised using MALDI-TOF TOF and CD spectroscopy prior to conjugation. Thereupon, a hybrid scaffold comprising of a polysaccharide, chitosan, chemically conjugated to a protein, mucin, and encapsulated with montmorillonite is developed. Grafting of hydroxyethyl methacrylate (HEMA) is done to overcome the issue of mechanical weakness that mucin hydrogels usually undergo. It was observed that the presence of montmorillonite led to the stability of the hydrogels. The conjugations with varied ratios of the polysaccharide and protein were characterized using spectroscopic techniques. The prepared gels showed appreciable material properties in terms of water uptake and porosity. Hydrogels with different ratios of the polysaccharide and protein were evaluated for their biocompatibility. The biological evaluation of the hydrogels was performed with MC3T3E1 and C2C12 cell lines indicating their potential for wider tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...