Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39377384

RESUMO

Most of the newly discovered drug candidates are lipophilic and poorly water-soluble, making it a significant challenge for the pharmaceutical industry to formulate suitable drug delivery systems. This review gives insight into an overview of the liquisolid technique (LST) and summarizes the progress of its various applications in drug delivery. This novel technique involves converting liquid drugs or drugs in a liquid state (such as solutions, suspensions, or emulsions) into dry, nonadherent, free-flowing, and readily compressible powder mixtures by blending or spraying a liquid dispersion onto specific powder carriers and coating materials. In Liquisolid systems, the liquid medication is absorbed into the interior framework of carriers. Once the carrier's interior is saturated with liquid medication, a liquid layer forms on the surface of the carrier particles, which is instantly adsorbed by the fine coating material. As a result, a dry, free-flowing, and compressible powder mixture is formed. Compared to other solubility enhancement techniques, s.a. micronization, inclusion complexation, microencapsulation, nanosuspension, and self-nano emulsions, LST is relatively simple to prepare and may offer a cost-effective solution to enhance the solubility of poorly water-soluble drugs enhancing its bioavailability in drug formulation and delivery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39185641

RESUMO

Pharmaceutical research is increasingly focusing on transdermal drug delivery due to its potential for improved compliance and bioavailability. However, it is challenging due to the tight intracellular junctions present in the skin. Researchers have developed noninvasive methods, like transfersomes, to overcome these challenges. Transfersomes are ultra-deformable vesicles utilized for improved transdermal applications. They are made up of a phospholipid-rich lipid bilayer, an edge activator, and an ethanol/aqueous core. After topical treatment, transfersomes can penetrate deeper skin regions, delivering larger concentrations of active compounds. A transfersomal patch is applied to the skin and left for an extended period of time to allow a large dose of medication to permeate into the bloodstream. The transfersomal patch offers an advantage over the transfersomal gel because it allows the transfersomes to be applied under occlusive conditions, resulting in greater permeability, a lower amount of active medication, and a steady supply rather than a massive dose. This review represents the preparation and evaluation of transfersomal patches, recent research approaches, and future aspects of transfersomal patches. This study suggests that drug-loaded transfersomal patches could be a unique option to avoid invasive therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA