Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 66: 162-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25601169

RESUMO

In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/patologia , Líquido Extracelular/química , Humanos , Dióxido de Silício/química
2.
Sci Rep ; 3: 1161, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378900

RESUMO

Here we show that electrical tuning of the sensitivity of chemitransistor sensors, namely field-effect-transistors (FETs) exploiting nano/mesostructured sensing materials, can be used to effectively address two chief problems of state-of-the-art gas sensors, specifically fabrication reliability and degradation by aging. Both experimental evidences and theoretical calculations are provided to support such a result, using as a case-of-study junction field-effect-transistors (JFETs) exploiting mesostructured porous silicon (PS) as sensing material (PSJFETs) for the detection of nitrogen dioxide (NO(2)) at hundreds ppb. Proof of concept is given by fully compensating the effect of fabrication errors on the sensitivity of two PSJFETs integrated on the same chip, which, though identical in principle, feature sensitivities to NO(2) differing from about 30% before compensation. Although here-demonstrated for the specific case of PSJFETs, the concept of sensor reliability/aging problem compensation by sensitivity electrical-tuning can be applied to other chemitransistor sensors that exploit sensing materials different than PS.


Assuntos
Transistores Eletrônicos , Técnicas Eletroquímicas , Modelos Moleculares , Nanoestruturas/química , Dióxido de Nitrogênio/análise , Porosidade , Silício/química
3.
Lab Chip ; 12(21): 4403-15, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22930245

RESUMO

In this work, we report all-silicon, integrated optofluidic microsystems (OFMs) fabricated by electrochemical micromachining (ECM) technology, in which high aspect-ratio (HAR) photonic crystal (PhC) devices (i.e. micromirrors, optical cavities) are integrated by one-etching-step, together with microfluidic reservoirs/channels, for the infiltration of liquids in the PhC air gaps, and with fiber grooves for alignment/positioning of readout optical fibers in front of the PhC, on the same silicon die. This has not previously been reported in the literature, and opens up new ground in, though not limited to, the optofluidics field, due to the low-cost and high-flexibility of the ECM technology that allows optofluidic microsystem fabrication to be performed in any lab. Optofluidic characterization of PhC-OFMs by both capillary-action and pressure-driven operations is carried out through the measurement of the reflectivity spectra of HAR-PhCs upon injection of liquids featuring different refractive index values in the HAR-PhC air gaps, by using readout optical fibers positioned in the on-chip fiber grooves. High sensitivity and good limit of detection of PhC-OFMs are obtained for both capillary-action and pressure-driven operations. A best sensitivity value of 670 nm/RIU and a worst-case limit of detection of the order of 10(-3) RIU are measured, the former being comparable to state-of-the-art integrated refractive index sensors and the latter being limited by constraints of the experimental setup. The proof of concept about the biosensing potential of PhC-OFMs is given by successfully carrying out a sandwich assay based on antigen-antibody interactions for the detection of the C-reactive protein (CRP) at a concentration value of 10 mg L(-1), which represents the boundary level between physiological and pathological conditions.


Assuntos
Proteína C-Reativa/análise , Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Ópticos , Técnicas Eletroquímicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...