Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 695: 149439, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160531

RESUMO

Celiac disease and other types of gluten intolerance significantly affect the life quality of patients making them restrict the diet removing all food produced from wheat, rye, oat, and barley flour, and some other products. These disorders arise from protease resistance of poorly soluble proteins prolamins, contained in gluten. Enhanced proteolytic digestion of gliadins might be considered as a prospective approach for the treatment of celiac disease and other types of gluten intolerance. Herein, we tested a range of sulfated polymers (kappa-carrageenan, dextran sulfate and different polysaccharides from brown seaweeds, and a synthetic polystyrene sulfonate) for the ability to activate gliadin digestion by human digestive proteases, pepsin and trypsin. Sulfated polysaccharide from Fucus evanescens enhanced proteolytic digestion of gliadins from wheat flour and reduced its cytotoxicity on intestinal epithelial Caco-2 cell culture. Regarding the non-toxic nature of fucoidans, the results provide a basis for polymer-based drugs or additives for the symptomatic treatment of gluten intolerance.


Assuntos
Doença Celíaca , Gliadina , Humanos , Gliadina/toxicidade , Gliadina/metabolismo , Células CACO-2 , Farinha , Sulfatos , Triticum , Glutens/metabolismo , Peptídeo Hidrolases , Polissacarídeos/farmacologia , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...