Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 450: 109070, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972084

RESUMO

Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.


Assuntos
Estimulação Acústica , Vias Auditivas , Inibição Pré-Pulso , Reflexo de Sobressalto , Corpo Trapezoide , Animais , Inibição Pré-Pulso/fisiologia , Masculino , Corpo Trapezoide/metabolismo , Corpo Trapezoide/fisiologia , Vias Auditivas/fisiologia , Vias Auditivas/metabolismo , Ratos Sprague-Dawley , Saporinas/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Potenciais Evocados Auditivos do Tronco Encefálico , Imunotoxinas , Nervo Coclear/metabolismo , Nervo Coclear/fisiologia , Ratos
2.
Eur J Histochem ; 60(3): 2623, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27734991

RESUMO

The spinal cord is involved in local, ascending and descending neural pathways. Few studies analyzed the distribution of neuromediators in the laminae of non-human primates along all segments. The present study described the classic neuromediators in the spinal cord of the non-human primate Sapajus spp. through histochemical and immunohistochemical methods. Nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d) method showed neuronal somata in the intermediolateral column (IML), central cervical nucleus (CCN), laminae I, II, III, IV, V, VI, VII, VIII and X, besides dense presence of nerve fibers in laminae II and IX. Acetylcholinesterase (AChE) activity was evident in the neuronal somata in laminae V, VI, VII, VIII, IX, CCN, IML and in the Clarke's column (CC). Immunohistochemistry data revealed neuronal nitric oxide synthase (nNOS) immunoreactivity  in neuronal somata and in fibers of laminae I, II, III, VII, VIII, X and IML; choline acetyltransferase (ChAT) in neuronal somata and in fibers of laminae VII, VIII and IX; calcitonin gene-related peptide (CGRP) was noticed in neuronal somata of lamina IX and in nerve fibers of laminae I, II, III, IV, V, VI and VII; substance P (SP) in nerve fibers of laminae I, II, III, IV, V, VI, VII, VIII, IX, X, CCN, CC and IML; serotonin (5-HT) and vesicular glutamate transporter-1 (VGLUT1) was noticed in nerve fibers of all laminae;  somatostatin (SOM) in neuronal somata of laminae III, IV, V, VI, VII, VIII and IX and nerve fibers in laminae I, II, V, VI, VII, X and IML; calbindin (Cb) in neuronal somata of laminae I, II, VI, VII, IX and X; parvalbumin (PV) was found in neuronal somata and in nerve fibers of laminae III, IV, V, VI, VII, VIII, IX and CC; finally, gamma-amino butyric acid (GABA) was present in neuronal somata of laminae V, VI, VII, VIII, IX and X. This study revealed interesting results concerning the chemoarchitecture of the Sapajus spp. spinal cord with a distribution pattern mostly similar to other mammals. The data corroborate the result described in literature, except for some differences in CGRP, SP, Cb, PV and GABA immunoreactivities present in neuronal somata and in nerve fibers. This could suggest certain specificity for the neurochemistry distribution in this non-human primate species, besides adding relevant data to support further studies related to processes involving spinal cord components.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Animais , Cebinae , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...