Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 175: 181-188, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464165

RESUMO

Chagas disease is one of seventeen neglected tropical diseases according to the World Health Organization (WHO). The histidine-glutamate metabolic pathway is an oxidative route that has shown to be relevant for the bioenergetics in Trypanosoma cruzi, the etiological agent for Chagas disease. Histidine ammonia-lyase participates in the first stage of the histidine catabolism, catalyzing the conversion of l-histidine into urocanate. This work presents the three-dimensional (3D) structure of Trypanosoma cruzi histidine ammonia-lyase enzyme (TcHAL) and some comparisons of it to homologous structures. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.55 Å resolution. After refinement, some structural analyses indicated that the structure does not contain the active site protection domain, in opposition to previously known 3D structures from plants and fungi phenylalanine ammonia-lyase, therefore, it is the first structure of eukaryotic ammonia-lyases that lacks this domain.


Assuntos
Histidina Amônia-Liase/química , Modelos Moleculares , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Cristalografia por Raios X , Domínios Proteicos
2.
J Eukaryot Microbiol ; 63(3): 299-308, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26496801

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease. During its life cycle, it alternates among vertebrate and invertebrate hosts. Metabolic flexibility is a main biochemical characteristic of this parasite, which is able to obtain energy by oxidizing a variety of nutrients that can be transported from the extracellular medium. Moreover, several of these metabolites, more specifically amino acids, have a variety of functions beyond being sources of energy. Branched chain amino acids (BCAA), beyond their role in ATP production, are involved in sterol biosynthesis; for example, leucine is involved as a negative regulator of the parasite differentiation process occurring in the insect midgut. BCAA are essential metabolites in most nonphotosynthetic eukaryotes, including trypanosomes. In view of this, the metabolism of BCAA in T. cruzi depends mainly on their transport into the cell. In this work, we kinetically characterized the BCAA transport in T. cruzi epimastigotes. Our data point to BCAA as being transported by a single saturable transport system able to recognize leucine, isoleucine and valine. In view of this, we used leucine to further characterize this system. The transport increased linearly with temperature from 10 to 45 °C, allowing the calculation of an activation energy of 51.30 kJ/mol. Leucine uptake was an active process depending on ATP production and a H(+) gradient, but not on a Na(+) or K(+) gradient at the cytoplasmic membrane level.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Membrana Celular/metabolismo , Trypanosoma cruzi/metabolismo , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos , Animais , Doença de Chagas/parasitologia , Isoleucina/metabolismo , Isoleucina/farmacologia , Cinética , Leucina/metabolismo , Leucina/farmacologia , Temperatura , Trypanosoma cruzi/efeitos dos fármacos , Valina/metabolismo , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...