Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 25373-25387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472583

RESUMO

Mn3O4/ZnO-Al2O3-CeO2 catalyst was synthesized through a solid-state process from a 3% Mn-doped Zn-(Al/Ce) layered double hydroxide structure. Detailed structural and optical characterization using XRD, FTIR, UV-visible DRS, and TEM was conducted. By investigating clofibric acid (CA) degradation in aqueous solution, Mn3O4/ZnO-Al2O3-CeO2 photocatalytic activity was evaluated. The results show that the heterostructure mixed oxide catalyst has excellent CA photodegradation performance. Further, the characterization reveals that such photocatalytic efficiency can be attributed to two facts that are summarized in the optical properties and the synergic effect between Mn and Ce elements. The sample demonstrated a narrow band gap of 2.34 eV based on DRS. According to the experimental results of the photodegradation, after 120 min of irradiation, the photocatalyst exhibited the highest photocatalytic activity, with a degradation efficiency of 93.6%. Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose of 0.3 g/L, initial dye concentration of 20 mg/L, pH 3.86, and 120 min of reaction time. The quenching test demonstrates that photogenerated electrons and superoxide radicals are the most powerful reactive species. The catalyst could be useful in decreasing the photogenerated charges recombination, which offers more redox cycles simultaneously during the catalytic process. The strong Ce-Mn interaction and the formation of their different oxidation states offer a high degradation efficiency by facilitating electron-hole transfer. The introduction of Mn3O4 in the catalyst can effectively improve the visible absorption properties, which are beneficial in the photocatalytic process by reaching a high catalytic efficiency at a low cost.


Assuntos
Óxidos , Óxido de Zinco , Óxidos/química , Água , Óxido de Zinco/química , Fotólise , Luz , Zinco
3.
Environ Sci Pollut Res Int ; 30(50): 109481-109499, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37924176

RESUMO

This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 25-1 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents. The maximum removal of polyphenols by sawdust reached 49.6% at 60 °C by using 60 g/L of adsorbent dose, pH 2, reaction time of 24 h, and agitation speed of 80 rpm. Whereas, for red clay, 48.08% of polyphenols removal was observed under the same conditions for sawdust except the temperature of 25 °C instead of 60 °C. In addition, the thermodynamic parameters suggested spontaneous process for both adsorbents, endothermic for the sawdust and exothermic for red clay. Furthermore, the phytotoxicity effect of OMW on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination was investigated. The obtained results showed that the untreated OMW inhibited the seed germination of T. turgidum and P. vulgaris seeds. OMW treatment with red clay followed by dilution (95% water) resulted in 87 and 30% germination of P. vulgaris and T. turgidum, respectively. While, the treatment of OMW with sawdust and dilution at 95% resulted in 51 and 26% germination of P. vulgaris and T. turgidum, respectively.


Assuntos
Olea , Phaseolus , Humanos , Olea/química , Triticum , Germinação , Argila , Sementes/química , Resíduos Industriais/análise , Polifenóis/farmacologia , Águas Residuárias
4.
Environ Sci Pollut Res Int ; 30(45): 100785-100798, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37640975

RESUMO

Indium(III)-doped Ag3PO4 (In-AgP) catalysts at different weight percentages were elaborated by co-precipitation and subjected to XRD, SEM, UV-vis DRS, and FTIR characterization. The prepared catalysts were of spherical morphology and their diameters depends on doping dosage. The whole materials crystallize in a centered cubic system with a slight dissimilation in the positions of the characteristic peaks as a function of indium dosage. The photocatalytic performance of the catalysts under visible light was investigated in the photocatalytic degradation of anionic dye (methyl orange (MO)) and cationic dye (auramine O (AO)) in moderate acid, neutral, and basic pH conditions. Results showed more selectivity to MO than AO. Furthermore, indium-doped samples are more active in the acidic medium than the pure Ag3PO4 (AgP), and 10%In-AgP catalyst presents the highest activity. The degradation efficiency reached 99 % in 60 min for MO and in 180 min for AO. In addition, a high recycling stability was achieved and the catalyst retains its degradation capacity above 99 % after five cycles.


Assuntos
Corantes , Índio , Corantes/química , Água , Luz , Catálise
5.
Artigo em Inglês | MEDLINE | ID: mdl-37227638

RESUMO

Fenton-like degradation of contaminants is considered to be a feasible method for eliminating environmental pollution. In this study, a novel ternary Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite was fabricated using a novel ultrasonic-assisted technique, and investigated as a Fenton-like catalyst for the removal of tartrazine (TRZ) dye. The nanocomposite was synthesized by first coating the SiO2 shell around the Mg0.8Cu0.2Fe2O4 core via a Stöber-like process to form Mg0.8Cu0.2Fe2O4/SiO2. Then, a simple ultrasonic-assisted route was used to synthesize Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite. This approach provides a simple and environmentally friendly way to produce this material without the use of any additional reductants or organic surfactants. The fabricated sample demonstrated excellent Fenton-like activity. The efficiency of Mg0.8Cu0.2Fe2O4 was significantly enhanced by the incorporation of SiO2 and CeO2, and complete removal of TRZ (30 mg/L) was achieved within 120 min using 0.2 g/L of Mg0.8Cu0.2Fe2O4/SiO2/CeO2. The scavenger test shows that the main active species is the strong oxidizing of hydroxyl radicals (HO•). Consequently, the Fenton-like mechanism of Mg0.8Cu0.2Fe2O4/SiO2/CeO2 is explained based on the coexistence of Fe3+/Fe2+, Cu2+/Cu+, and Ce4+/Ce3+ redox couples. The removal efficiency of TRZ dye remained around 85% after the third recycling run, revealing that the nanocomposite could be employed to eliminate organic contaminants in water treatment. This research opened up a new avenue for expanding the practical application of new-generation Fenton-like catalysts.

6.
Environ Sci Pollut Res Int ; 30(22): 62494-62507, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943563

RESUMO

In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.


Assuntos
Níquel , Raios Ultravioleta , Argila , Microscopia Eletrônica de Varredura , Catálise
7.
Environ Sci Pollut Res Int ; 30(34): 81403-81416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36044150

RESUMO

In this study, ZnO-Zn2TiO4 (ZTM) material was prepared through a novel synthesis method based on a ultrasound-assisted polyol-mediated process followed by calcination at a different temperature. Physical features of the samples were studied by using various analysis techniques including XRD, FT-IR, SEM/EDX, pHPZC, and UV-Vis DRS. Subsequently, the materials were employed as catalysts for the photocatalytic degradation of clofibric acid as a model pharmaceutical contaminant. The photocatalytic performance was evaluated under different conditions of calcination temperature, catalyst dosage, starting concentration, and initial pH of clofibric acid solution. The finding results revealed that hexagonal-tetragonal phases of ZnO-Zn2TiO4 calcined at 600 °C (ZTM-600) with an average crystallite size of 97.8 Å exhibited the best degradation efficiency (99%). The primary bands characteristic of ZnO and Zn2TiO4 were displayed by FT-IR analysis and the UV-visible DRS confirms the larger absorption capacity in UV-visible regions. The photogenerated electrons are the powerful reactive species involved in clofibric acid photodegradation process. This study shows a promising photocatalyst and provides new sight to rational design the facets of photocatalysis process for enhanced photocatalytic performances and effective wastewater treatment.


Assuntos
Óxido de Zinco , Óxido de Zinco/química , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco , Preparações Farmacêuticas
8.
Environ Sci Pollut Res Int ; 30(9): 23938-23964, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329247

RESUMO

In the present work, we prepared MgO-La2O3-mixed-metal oxides (MMO) as efficient photocatalysts for degradation of organic pollutants. First, a series of MgAl-%La-CO3-layered double hydroxide (LDH) precursors with different contents of La (5, 10, and 20 wt%) were synthesized by the co-precipitation process and then calcined at 600 °C. The prepared materials were characterized by XRD, SEM-EDX, FTIR, TGA, ICP, and UV-vis diffuse reflectance spectroscopy. XRD indicated that MgO, La2O3, and MgAl2O4 phases were found to coexist in the calcined materials. Also, XRD confirms the orthorhombic-tetragonal phases of MgO-La2O3. The samples exhibited a small band gap of 3.0-3.22 eV based on DRS. The photocatalytic activity of the catalysts was assessed for the degradation of two dyes, namely, tartrazine (TZ) and patent blue (PB) as model organic pollutants in aqueous mediums under UV-visible light. Detailed photocatalytic tests that focused on the impacts of dopant amount of La, catalyst dose, initial pH of the solution, irradiation time, dye concentration, and reuse were carried out and discussed in this research. The experimental findings reveal that the highest photocatalytic activity was achieved with the MgO-La2O3-10% MMO with photocatalysts with a degradation efficiency of 97.4% and 93.87% for TZ and PB, respectively, within 150 min of irradiation. The addition of La to the sample was responsible for its highest photocatalytic activity. Response surface methodology (RSM) and gradient boosting regressor (GBR), as artificial intelligence techniques, were employed to assess individual and interactive influences of initial dye concentration, catalyst dose, initial pH, and irradiation time on the degradation performance. The GBR technique predicts the degradation efficiency results with R2 = 0.98 for both TZ and PB. Moreover, ANOVA analysis employing CCD-RSM reveals a high agreement between the quadratic model predictions and the experimental results for TZ and PB (R2 = 0.9327 and Adj-R2 = 0.8699, R2 = 0.9574 and Adj-R2 = 0.8704, respectively). Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose 0.3 g/L, initial dye concentration 20 mg/L, pH 4, and reaction time 150 min. On the whole, this study confirms that the proposed artificial intelligence (AI) techniques constituted reliable and robust computer techniques for monitoring and modeling the photodegradation of organic pollutants from aqueous mediums by MgO-La2O3-MMO heterostructure catalysts.


Assuntos
Corantes , Óxido de Magnésio , Corantes/química , Fotólise , Inteligência Artificial , Óxidos , Água/química , Catálise
9.
Acta Chim Slov ; 69(3): 536-551, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36196820

RESUMO

This study reports nickel removing by electrocoagulation of Ni(II)-NH3-CO2-SO2-H2O system at laboratory scale. Experiments were done using Al/Al pair electrodes at initial nickel concentration between 293 and 1356 mg·L-1 and under operation parameters of pH 8.6, current density 9.8 mA·cm-2, electrolysis time 30 min, and temperature 60 ºC. The obtained results show removal efficiencies between 97.7 and 99.7 %. Kinetics modeling suggested combined effects of external diffusion and nucleation, and as controlling step the chemical reaction and a possible autocatalytic contribution. The process followed the Langmuir´s isotherm with a maximum adsorption capacity of 7519 mg·g-1. ICP-OES, XRD and FTIR characterization of the precipitates indicated a typical Ni-Al layered double hydroxide structures with 33.4-40.7 % nickel and 6.3-7.0 % aluminum depending on initial nickel concentration. The operation costs of energy and electrode consumption were 320 - 537 $·t-1 of removed nickel.

10.
Sci Total Environ ; 807(Pt 1): 150554, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597573

RESUMO

During the last few years, important advances have been made in big data exploration, complex pattern recognition and prediction of complex variables. Machine learning (ML) algorithms can efficiently analyze voluminous data, identify complex patterns and extract conclusions. In chemical engineering, the application of machine learning approaches has become highly attractive due to the growing complexity of this field. Machine learning allows computers to solve problems by learning from large data sets and provides researchers with an excellent opportunity to enhance the quality of predictions for the output variables of a chemical process. Its performance has been increasingly exploited to overcome a wide range of challenges in chemistry and chemical engineering, including improving computational chemistry, planning materials synthesis and modeling pollutant removal processes. In this review, we introduce this discipline in terms of its accessible to chemistry and highlight studies that illustrate in-depth the exploitation of machine learning. The main aim of the review paper is to answer these questions by analyzing physicochemical processes that exploit machine learning in organic and inorganic pollutants removal. In general, the purpose of this review is both to provide a summary of research related to the removal of various contaminants performed by ML models and to present future research needs in ML for contaminant removal.


Assuntos
Poluentes Ambientais , Algoritmos , Aprendizado de Máquina
11.
J Pharm Anal ; 11(2): 138-154, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012690

RESUMO

Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.

12.
J Environ Manage ; 288: 112404, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33780817

RESUMO

Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
13.
Int J Biol Macromol ; 166: 707-721, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137390

RESUMO

This study aims to evaluate and understand the adsorption of eriochrome black T (EB) by chitosan extracted from local shrimp shells under different experimental conditions. Chitosan samples were characterized by XRD, SEM, and FTIR. Experimental results indicate that the process was pH-dependent with a high adsorption capacity in acidic medium. The adsorption was rapid and kinetic data were suitably correlated to the pseudo-second-order kinetic model. EB molecules were adsorbed on monolayer according to the Langmuir model with an adsorption capacity of 162.3 mg/g. On the other hand, it should be noted that calculated quantum chemical parameters support the experimentally obtained results. The interaction energies calculated for (molecule/chitosan) complexes were in the order of H2EB- > HEB2- (O38) > HEB2- (O48) > EB > H3EB > EB3-, which means that the best and possible adsorption process can take place with H2EB- form. The molecular dynamics (MD) approach was performed to illuminate the nature of the relationship between the EB and the chitosan (110) surface. It was found that the chitosan (110) surface adsorbs EB molecule in a nearby parallel orientation. The higher negative adsorption energy determined for the H2EB- implies that the adsorption mechanism is the typical chemisorption.


Assuntos
Compostos Azo/química , Quitosana/química , Adsorção , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
14.
Sci Total Environ ; 761: 143192, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33153744

RESUMO

Currently, the apparition of new SARS-CoV, known as SARS-CoV-2, affected more than 34 million people and causing high death rates worldwide. Recently, several studies reported SARS-CoV-2 ribonucleic acid (RNA) in hospital wastewater. SARS-CoV-2 can be transmitted between humans via respiratory droplets, close contact and fomites. Fecal-oral transmission is considered also as a potential route of transmission since several scientists confirmed the presence of SARS-CoV-2 RNA in feces of infected patients, therefore its transmission via feces in aquatic environment, particularly hospital wastewater. Hospitals are one of the important classes of polluting sectors around the world. It was identified that hospital wastewater contains hazardous elements and a wide variety of microbial pathogens and viruses. Therefore, this may potentially pose a significant risk of public health and environment infection. This study reported an introduction about the Physical-chemical and microbiological characterization of hospital wastewater, which can be a route to identify potential technology to reduce the impact of hospital contaminants before evacuation. The presence of SARS-CoV-2 in aqueous environment was reviewed. The knowledge of the detection and survival of SARS-CoV-2 in wastewater and hospital wastewater were described to understand the different routes of SARS-CoV-2 transmission, which is also useful to avoid the outbreak of CoV-19. In addition, disinfection technologies used commonly for deactivation of SARS-CoV-2 were highlighted. It was revealed that, chlorine-containing disinfectants are the most commonly used disinfectants in this field of research. Meanwhile, other efficient technologies must be developed and improved to avoid another wave of the pandemic of COVID-19 infections.


Assuntos
COVID-19 , SARS-CoV-2 , Desinfecção , Hospitais , Humanos , Tecnologia , Águas Residuárias
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-883507

RESUMO

Paracetamol is a non-steroidal,anti-inflammatory drug widely used in pharmaceutical applications for its sturdy,antipyretic and analgesic action.However,an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects.Thus,the development of advantageous analytical tools to detect and determine paracetamol is required.Due to simplicity,higher sensitivity and selectivity as well as costefficiency,electrochemical sensors were fully investigated in last decades.This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples.The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined,with a special focus on highly innovative features introduced by nanotechnology.As the literature is rather extensive,we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.

16.
J Environ Sci (China) ; 20(10): 1268-72, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19143354

RESUMO

The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2 and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.


Assuntos
Antraquinonas/química , Corantes/química , Durapatita/química , Ftalimidas/química , Poluentes Químicos da Água/química , Adsorção , Durapatita/síntese química , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...