Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(8): 2013-2016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621064

RESUMO

The Smith-Purcell effect allows for coherent free-electron-driven compact light sources over the entire electromagnetic spectrum. Intriguing interaction regimes, with prospects for quantum optical applications, are expected when the driving free electron enters the sub-keV range, though this has until now remained an experimental challenge. Here, we demonstrate the Smith-Purcell light emission from UV to visible using engineerable, fabricated gratings with periodicities as low as 19 nm and with electron energies as low as 300 eV. Our findings constitute a major step toward broadband, highly tunable, on-chip light sources, observation of quantum recoil effects, and tunable EUV and x ray sources from swift electrons.

2.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770142

RESUMO

This study examines the fundamental feasibility of sequential metal-powder solidification by localized microwave-heating (LMH) provided by a scanning, all-solid-state microwave applicator. This continuous process is considered for the additive manufacturing (AM) and 3D printing (3DP) applications of metal parts. In previous studies, we employed LMH for the incremental solidification of small batches of metal powder in a stepwise vertical manner. Here, we study a continuous lateral LMH process, layer by layer, in a fashion similar to laser scanning in powder beds, as performed in common laser-based AM systems. LMH solidification at scanning rates of ~1 mm3/s is obtained in bronze powder using ~0.25-kW microwave power. The effect is studied here by LMH scanning in one lateral dimension (~20-mm long) in layers, each of ~1-4 mm thickness and ~2-4 mm width (mechanically confined). Imperfect solid bars of ~20×4×5 mm3 are obtained with rough surfaces. Their joining in an L shape is also demonstrated. The experimental solidified products are tested, and their hardness and density properties are found to be comparable to laser-based AM products. The capabilities and limitations of the LMH scanning concept for metal-powder solidification are evaluated. The potential feasibility of a solid-state LMH-AM technology is discussed.

3.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057356

RESUMO

Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young's modulus, shear modulus, and Poisson's ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young's moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (µCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free µCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin ß-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.

4.
Polymers (Basel) ; 12(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545911

RESUMO

Soft electronics based on various rubbers have lately been needed in many advanced applications such as soft robotics, wearable electronics, and remote health monitoring. The ability of a self-sensing material to be monitored in use provides a significant advantage. However, conductive fillers usually used to increase conductivity also change mechanical properties. Most importantly, the initial sought-after properties of rubber, namely softness and long elastic deformation, are usually compromised. This work presents full mechanical and electro-mechanical characterization, together with self-sensing abilities of a vinyl methyl silicone rubber (VMQ) and multi-walled carbon nanotubes (MWCNTs) composite, featuring conductivity while maintaining low hardness. The research demonstrates that MWCNT/VMQ with just 4 wt.% of MWCNT are as conductive as commercial conductive VMQ based on Carbon Black, while exhibiting lower hardness and higher elastic recovery (~20% plastic deformation, similar to pure rubber). The research also demonstrates piezo-resistivity and Raman-sensitivity, allowing for self-sensing. Using morphological data, proposed mechanisms for the superior electrical and mechanical behavior, as well as the in-situ fingerprint for the composite conditions are presented. This research novelty is in the full MWCNT/VMQ mechanical and electro-mechanical characterization, thus demonstrating its ability to serve as a sensor over large local strains, multiple straining cycles, and environmental damage.

5.
Sci Rep ; 9(1): 1241, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718658

RESUMO

Surveys conducted in Eilat's upper mesophotic coral ecosystem (MCE) revealed protruding columnar calcareous structures with a Sinularia octocoral colony growing atop of each. The current study addressed the hypothesis that these colonies produce spiculites, and sought to determine (a) the spatial occurrence and dimensions of the spiculite-forming colonies and their species affiliation; (b) their microstructural features; and (c) the elemental composition of the columnar spiculites in comparison to the sclerites of the colonies. All the spiculite-forming colonies were exclusively found in the upper MCEs and produced by S. vrijmoethi. This type of spiculite, including its elemental analysis, is reported here for the first time for coral reefs in general and for the MCE in particular. Examination of the spiculites by scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed spindle shaped-sclerites cemented by crystallites. The elemental composition of the sclerites differed from that of the cementing crystallites, in featuring ~8% Mg in the former and none in the latter. Inductively coupled plasma mass spectrometry revealed fragments of spiculite to be composed of 35% sclerites and 65% crystallites. X-ray powder diffraction analysis of individual sclerites indicated that they are composed exclusively of magnesium-calcite, and the spiculite fragments to also feature 9.3 ± 4% aragonite and 5-7% amorphous calcium carbonate. Consequently, it is proposed that the formation of the crystallites, which lithify the sclerites, is caused by a non-biogenic aragonite precipitation, and that the living colony might benefit from this protruding spiculite structure by means of enhanced exposure to water flow.


Assuntos
Antozoários/química , Carbonato de Cálcio/análise , Recifes de Corais , Animais , Antozoários/metabolismo , Antozoários/ultraestrutura , Carbonato de Cálcio/metabolismo , Magnésio/análise , Magnésio/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Difração de Raios X
6.
Nano Lett ; 18(1): 70-80, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29198117

RESUMO

The highly controlled formation of "radial" silicon/NiSi  core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.

7.
Chem Commun (Camb) ; 53(55): 7740-7743, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649685

RESUMO

The formation of intricately shaped crystalline minerals by organisms is orchestrated by specialized biomacromolecules. The macromolecules associated with coccoliths, nanometer-sized calcite crystal arrays produced by marine microalgae, can form a distinct calcium-rich phase via macromolecular recognition. Here, we show that this calcium-rich phase can be mineralized into a thin film of single-crystalline calcite by the balanced addition of carbonate ions. Such a crystallization process provides a strategy to direct crystalline products via local interactions between soluble macromolecules and compatible templates.

8.
Colloids Surf B Biointerfaces ; 157: 417-423, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633122

RESUMO

Cold radiofrequency plasma treatment modified wetting and floating regimes of pepper seeds. The wetting regime of plasma-treated seeds was switched from the Wenzel-like partial wetting to the complete wetting. No hydrophobic recovery following the plasma treatment was registered. Environmental scanning electron microscopy of the fine structure of the (three-phase) triple line observed with virgin and plasma-treated seeds is reported. Plasma treatment promoted rapid sinking of pepper seeds placed on the water/air interface. Plasma treatment did not influence the surface topography of pepper seeds, while charged them electrically. Electrostatic repulsion of floating plasma-treated seeds was observed. The surface charge density was estimated from the data extracted from floating of charged seeds and independently with the electrostatic pendulum as σ≈1-2µC/m2.


Assuntos
Gases em Plasma , Sementes , Molhabilidade , Ar , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água
9.
Eur Phys J E Soft Matter ; 38(1): 2, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618613

RESUMO

The fine structure of the three-phase (triple) line was studied for different liquids, various topographies of micro-rough substrates and various wetting regimes. Wetting of porous and pillar-based micro-scaled polymer surfaces was investigated. The triple line was visualized with the environmental scanning electron microscope and scanning electron microscope for the "frozen" triple lines. The value of the roughness exponent ζ for water (ice)/rough polymer systems was located within 0.55-0.63. For epoxy glue/rough polymer systems somewhat lower values of the exponent, 0.42 < ζ < 0.54, were established. The obtained values of ζ were close for the Cassie and Wenzel wetting regimes, different liquids, and different substrates' topographies. Thus, the above values of the exponent are to a great extent universal. The switch of the exponent, when the roughness size approaches to the correlation length of the defects, is also universal.

10.
PLoS One ; 9(4): e91553, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710022

RESUMO

Increase in anthropogenic pCO2 alters seawater chemistry and could lead to reduced calcification or skeleton dissolution of calcifiers and thereby weaken coral-reef structure. Studies have suggested that the complex and diverse responses in stony coral growth and calcification, as a result of elevated pCO2, can be explained by the extent to which their soft tissues cover the underlying skeleton. This study compared the effects of decreased pH on the microstructural features of both in hospite (within the colony) and isolated sclerites (in the absence of tissue protection) of the zooxanthellate reef-dwelling octocoral Ovabunda macrospiculata. Colonies and isolated sclerites were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 42 days. Both in hospite and isolated sclerites were then examined under SEM and ESEM microscopy in order to detect any microstructural changes. No differences were found in the microstructure of the in hospite sclerites between the control and the pH treatments. In stark contrast, the isolated sclerites revealed dissolution damage related to the acidity of the water. These findings suggest a protective role of the octocoral tissue against adverse pH conditions, thus maintaining them unharmed at high pCO2. In light of the competition for space with the less resilient reef calcifiers, octocorals may thus have a significant advantage under greater than normal acidic conditions.


Assuntos
Antozoários/crescimento & desenvolvimento , Dióxido de Carbono/química , Oceanos e Mares , Animais , Concentração de Íons de Hidrogênio
11.
Microsc Microanal ; 20(2): 317-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24284279

RESUMO

Two related aspects of nano-droplet condensation and droplets coalescence are studied for droplets on self-supported thin water films. The experiments are conducted in the environmental scanning electron microscope using wet scanning transmission electron microscopy. Favorable condensation sites are examined and in-situ position-controlled condensation experiments are conducted. The interaction among condensed multi-droplets as well as between a single droplet and the underneath nano-thick water film are dynamically examined with 10nm lateral resolution. The droplet round shape is reshaped to flat-like facets in-between droplets of 30-230 nm separation. Dynamic imaging of a few minutes duration shows a delayed coalescence effect, being explained by increased droplet-droplet electrostatic interaction relative to van der Waals interaction.

12.
Angew Chem Int Ed Engl ; 52(43): 11298-302, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24038755

RESUMO

A prize for the ribbons: High-quality crystalline semiconducting nanoribbons can be prepared by "unwrapping" core-shell nanowire precursors. For example, Ge nanowires were coated with a Si shell and the top surface was carved by etching whereas the sides were protected by a thin layer of photoresist material. Finally the Ge core was removed selectively by chemical means to give fully opened and flat nanoribbon structures.

13.
Materials (Basel) ; 6(9): 4011-4030, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28788315

RESUMO

This paper presents experimental characterization of plasmoids (fireballs) obtained by directing localized microwave power (<1 kW at 2.45 GHz) onto a silicon-based substrate in a microwave cavity. The plasmoid emerges up from the hotspot created in the solid substrate into the air within the microwave cavity. The experimental diagnostics employed for the fireball characterization in this study include measurements of microwave scattering, optical spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Various characteristics of these plasmoids as dusty plasma are drawn by a theoretical analysis of the experimental observations. Aggregations of dust particles within the plasmoid are detected at nanometer and micrometer scales by both in-situ SAXS and ex-situ SEM measurements. The resemblance of these plasmoids to the natural ball-lightning (BL) phenomenon is discussed with regard to silicon nano-particle clustering and formation of slowly-oxidized silicon micro-spheres within the BL. Potential applications and practical derivatives of this study (e.g., direct conversion of solids to powders, material identification by breakdown spectroscopy (MIBS), thermite ignition, and combustion) are discussed.

14.
Nano Lett ; 12(1): 7-12, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22142384

RESUMO

To fully exploit their full potential, new semiconductor nanowire building blocks with ab initio controlled shapes are desired. However, and despite the great synthetic advances achieved, the ability to control nanowire's geometry has been significantly limited. Here, we demonstrate a simple confinement-guided nanowire growth method that enables to predesign not only the chemical and physical attributes of the synthesized nanowires but also allows a perfect and unlimited control over their geometry. Our method allows the synthesis of semiconductor nanowires in a wide variety of two-dimensional shapes such as any kinked (different turning angles), sinusoidal, linear, and spiral shapes, so that practically any desired geometry can be defined. The shape-controlled nanowires can be grown on almost any substrate such as silicon wafer, quartz and glass slides, and even on plastic substrates (e.g., Kapton HN).


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Semicondutores , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
Biomacromolecules ; 12(4): 1349-54, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21388228

RESUMO

Phase transitions in organic and inorganic materials are well-studied classical phenomena, where a change in the crystal space group symmetry induces a wide variation of physical properties, permitted by the crystalline symmetry in each phase. Here we observe a conformational induced transition in bioinspired peptide nanotubes (PNTs). We found that the PNTs change their original molecular assembly from a linear peptide conformation to a cyclic one, followed by a change of the nanocrystalline structure from a noncentrosymmetric hexagonal space group to a centrosymmetric orthorhombic space group. The observed transition is irreversible and induces a profound variation in the PNTs properties, from the microscopic to the macroscopic level. In this context, we follow the unique changes in the molecular, morphological, piezoelectric, second harmonic generation, and wettability properties of the PNTs.


Assuntos
Nanotubos , Peptídeos/química , Microscopia Eletrônica de Transmissão e Varredura , Termogravimetria , Molhabilidade , Difração de Raios X
16.
Nano Lett ; 9(12): 4246-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19852500

RESUMO

The preparation of conductive and transparent gold/silver nanowire mesh films is reported. The nanowires formed after the reduction of the metal ions was triggered and a thin growth solution film was spread on a substrate. Metal reduction progressed within a template of a highly concentrated surfactant liquid crystalline mesostructure formed on the substrate during film drying to form ordered bundles of ultrathin nanowires. The films exhibited metallic conductivity over large areas, high transparency, and flexibility.


Assuntos
Cristalização/métodos , Ouro/química , Membranas Artificiais , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Prata/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
17.
Microsc Microanal ; 15(2): 125-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19284894

RESUMO

The secondary electron (SE) signal over a cleaved surface of GaAs p-i-n solar cells containing stacks of quantum wells (QWs) is analyzed by high-resolution scanning electron microscopy. The InGaAs QWs appear darker than the GaAsP barriers, which is attributed to the differences in electron affinity. This method is shown to be a powerful tool for profiling the conduction band minimum across junctions and interfaces with nanometer resolution. The intrinsic region is shown to be pinned to the Fermi level. Additional SE contrast mechanisms are discussed in relation to the dopant regions themselves as well as the AlGaAs window at the p-region. A novel method of in situ observation of the SE profile changes resulting from reverse biasing these structures shows that the built-in potential may be deduced. The obtained value of 0.7 eV is lower than the conventional bulk value due to surface effects.


Assuntos
Arsenicais/química , Gálio/química , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Teoria Quântica , Propriedades de Superfície
18.
Acta Biomater ; 5(6): 2258-69, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19251497

RESUMO

Osseointegration, in terms of the bone apposition ratio (BAR) and the new bone area (NBA), was measured by backscattered electron imaging. The results were compared for four implant types: grit-blasted and NaOH-treated Ti-6Al-4V (Uncoated-NaOH), electrodeposited with hydroxyapatite without alkali treatment (ED-HAp), electrodeposited with hydroxyapatite after alkali treatment (NaOH-ED-HAp), and plasma sprayed with hydroxyapatite (PS-HAp). No heat treatment was done after soaking in NaOH. The implants were press fitted into the intramedullary canal of mature New Zealand white rabbits and analyzed, both at the diaphyseal and at the metaphyseal zones, either 1week or 12weeks after surgery. NaOH-ED-HAp already exhibited a higher BAR value than the ED-HAp at 1week, and was as good as the commercial PS-HAp at 12weeks. The NBA value for NaOH-ED-HAp at 12weeks was the highest. The higher content of octacalcium phosphate in NaOH-ED-HAp, as evident from the X-ray photoelectron spectroscopy analysis of the oxygen shake-up peaks, and the associated increase in the solubility of this coating in vivo are considered responsible for the enhanced osseointegration. Taking into account also the reduced occurrence of delamination and the inherent advantages of the electrodeposition process, electrodeposition of HAp following soaking in NaOH may become an attractive alternative for the traditional plasma-sprayed process for coating of orthopedic and dental implants.


Assuntos
Durapatita/química , Galvanoplastia/métodos , Fraturas do Fêmur/cirurgia , Osseointegração/fisiologia , Próteses e Implantes , Hidróxido de Sódio/química , Titânio/química , Ligas , Animais , Análise de Falha de Equipamento , Fraturas do Fêmur/patologia , Desenho de Prótese , Coelhos , Propriedades de Superfície
19.
Langmuir ; 25(4): 1893-6, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19152257

RESUMO

The surface of water "marbles" obtained with hydrophobic lycopodium and polyvinylidene fluoride particles was investigated first with environmental scanning electron microscopy. The shape of water marbles was studied both experimentally and theoretically. The mathematical model describing the deformation of marbles by gravity is proposed. The model allowed the calculation of the effective surface tension of marbles and gives 0.09 J/m2 for marbles coated with PVDF and 0.06 J/m2 for marbles coated with lycopodium. The effective surface tensions of marbles calculated independently by the horizontal vibration of marbles were in semiquantitative agreement with the above values (0.07 J/m2 for marbles coated with PVDF and 0.055 J/m2 for marbles coated with lycopodium).

20.
Micron ; 40(4): 480-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19167897

RESUMO

New drug-encapsulating particles were investigated using bright field (BF) scanning transmission electron microscopy (STEM) in a field emission gun (FEG) scanning electron microscope (SEM). Thickness characterization was done based on measuring the effective cross-section for interaction in our sample-detector configuration using calibration particles. A simplified analytical model, taking account of BF-STEM contrast and effective cross-section for interaction, was utilized for transforming projected two-dimensional BF-STEM images into three-dimensional thickness images. The three-dimensional characterization is demonstrated on a new family of biological materials composed of submicron to micron drug-free and drug-encapsulating particles. The importance of using BF-STEM in SEM, relative to other electron microscopy methods, is discussed as well as the lateral and depth resolution.


Assuntos
Cápsulas , Portadores de Fármacos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão e Varredura/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...