Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 3(1): 103-14, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17168903

RESUMO

The availability of foods low in sugar content yet high in flavour is critically important to millions of individuals conscious of carbohydrate intake for diabetic or dietetic purposes. Brazzein is a sweet protein occurring naturally in a tropical plant that is impractical to produce economically on a large scale, thus limiting its availability for food products. We report here the use of a maize expression system for the production of this naturally sweet protein. High expression of brazzein was obtained, with accumulation of up to 4% total soluble protein in maize seed. Purified corn brazzein possessed a sweetness intensity of up to 1200 times that of sucrose on a per weight basis. In addition, application tests demonstrated that brazzein-containing maize germ flour could be used directly in food applications, providing product sweetness. These results demonstrate that high-intensity sweet protein engineered into food products can give sweetener attributes useful in the food industry.

2.
Biotechnol Appl Biochem ; 38(Pt 2): 123-30, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12749769

RESUMO

Bovine trypsin (EC 3.4.21.4) is an enzyme that is widely used for commercial purposes to digest or process other proteins, including some therapeutic proteins. The biopharmaceutical industry is trying to eliminate animal-derived proteins from manufacturing processes due to the possible contamination of these products by human pathogens. Recombinant trypsin has been produced in a number of systems, including cell culture, bacteria and yeast. To date, these expression systems have not produced trypsin on a scale sufficient to fulfill the need of biopharmaceutical manufacturers where kilogram quantities are often required. The present paper describes commercial-level production of trypsin in transgenic maize (Zea mays) and its physical and functional characterization. This protease, the first enzyme to be produced on a large-scale using transgenic plant technology, is functionally equivalent to native bovine pancreatic trypsin. The availability of this reagent should allow for the replacement of animal-derived trypsin in the processing of pharmaceutical proteins.


Assuntos
Plantas Geneticamente Modificadas/enzimologia , Tripsina/genética , Zea mays/genética , Animais , Bovinos , Clonagem Molecular , Ativação Enzimática , Farinha , Glicosilação , Humanos , Cinética , Plantas Geneticamente Modificadas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Sementes/química , Sementes/enzimologia , Tripsina/biossíntese , Tripsina/metabolismo , Tripsinogênio/metabolismo , Zea mays/química , Zea mays/enzimologia
3.
Vaccine ; 21(7-8): 812-5, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12531366

RESUMO

The synthesis of selected antigens in plants and their oral delivery has great potential for reducing the costs of vaccine production and administration. The application of this technology requires antigen concentrations in final plant material to be uniform to ensure consistent dosing. In addition, antigen levels should be such as to allow the volume of each dose, containing a set amount of antigen, to be practical for oral delivery. Here, we demonstrate that the Lt-B protein of enterotoxigenic E. coli is evenly distributed in defatted corn germ prepared from transgenic grain. Furthermore, the choice of sub-cellular location for Lt-B affects accumulation of the protein in excess of four orders of magnitude.


Assuntos
Toxinas Bacterianas/biossíntese , Enterotoxinas/biossíntese , Proteínas de Escherichia coli , Vacinas/biossíntese , Zea mays/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/genética , Escherichia coli , Plantas Geneticamente Modificadas , Sementes/metabolismo , Vacinas/administração & dosagem , Vacinas/imunologia , Zea mays/genética
4.
J Control Release ; 85(1-3): 169-80, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12480322

RESUMO

The use of recombinant gene technologies by the vaccine industry has revolutionized the way antigens are generated, and has provided safer, more effective means of protecting animals and humans against bacterial and viral pathogens. Viral and bacterial antigens for recombinant subunit vaccines have been produced in a variety of organisms. Transgenic plants are now recognized as legitimate sources for these proteins, especially in the developing area of oral vaccines, because antigens have been shown to be correctly processed in plants into forms that elicit immune responses when fed to animals or humans. Antigens expressed in maize (Zea mays) are particularly attractive since they can be deposited in the natural storage vessel, the corn seed, and can be conveniently delivered to any organism that consumes grain. We have previously demonstrated high level expression of the B-subunit of Escherichia coli heat-labile enterotoxin and the spike protein of swine transmissible gastroenteritis in corn, and have demonstrated that these antigens delivered in the seed elicit protective immune responses. Here we provide additional data to support the potency, efficacy, and stability of recombinant subunit vaccines delivered in maize seed.


Assuntos
Sistemas de Liberação de Medicamentos/veterinária , Proteínas de Escherichia coli , Sementes , Vacinação/veterinária , Vacinas Sintéticas/administração & dosagem , Zea mays , Administração Oral , Animais , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Química Farmacêutica , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Gastroenterite Suína Transmissível/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/administração & dosagem , Extratos Vegetais/imunologia , Plantas Geneticamente Modificadas/imunologia , Sementes/imunologia , Sementes/microbiologia , Sementes/virologia , Suínos , Vírus da Gastroenterite Transmissível/imunologia , Vacinas Sintéticas/imunologia , Proteínas Virais/administração & dosagem , Proteínas Virais/imunologia , Zea mays/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...