Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 36(9): 2657-2662, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916892

RESUMO

ABSTRACT: Harry, JR, Krzyszkowski, J, Harris, K, Chowning, L, Mackey, E, Bishop, C, and Barker, LA. Momentum-based load prescriptions: Applications to jump squat training. J Strength Cond Res 36(9): 2657-2662, 2022-Velocity-based training is often applied to ballistic exercises, like the barbell jump squat, to improve vertical jump performance. However, determining the ideal training load based on velocity data remains difficult because load prescriptions tend to be limited to subjective velocity loss thresholds, velocity ranges, or both. Using data from jump squats performed with 0, 15, 30, 45, and 60% of the 1-repetition maximum squat, we explored subjective and objective methods to determine the ideal training load. Specifically, we explored takeoff velocity and a related metric only recently discussed in the literature, system momentum (i.e., takeoff velocity multiplied by the mass of the athlete-load system). At the group level, an ideal training load could not be revealed objectively using takeoff velocity. With individual subjects, the process remained challenging using takeoff velocity. Conversely, an ideal training load could be revealed easily and objectively using system momentum at the group average and individual subject levels. System momentum at takeoff is well-suited to assist practitioners seeking to identify appropriate training loads for jump squat training and potentially other ballistic exercises. We suggest a pivot from velocity to system momentum when seeking to objectively establish training loads for the jump squat and related exercises.


Assuntos
Treinamento Resistido , Atletas , Humanos , Força Muscular , Postura , Prescrições , Treinamento Resistido/métodos
2.
J Strength Cond Res ; 36(5): 1459-1467, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32287092

RESUMO

ABSTRACT: Harry, JR, Blinch, J, Barker, LA, Krzyszkowski, J, and Chowning, L. Low-pass filter effects on metrics of countermovement vertical jump performance. J Strength Cond Res 36(5): 1459-1467, 2022-Countermovement vertical jump (CMVJ) studies using ground reaction force (GRF) data analyze either unfiltered (i.e., raw) or filtered data while providing little-to-no justification for the selected filtering process. Inappropriate filter choices can lead to inaccurate study results and erroneous interpretations. We examined the effects of not filtering GRF data in comparison with filtering data with various objectively and subjectively selected cutoff frequencies. Twenty-one collegiate male basketball players completed 3 maximal-effort CMVJ trials while GRF data were obtained from 2 force platforms. Countermovement vertical jump performance, explosiveness, power output, and neuromuscular function variables were compared among the following methods using one-way repeated-measures analyses of variance (α = 0.05): no filtering (raw data), a standard 50-Hz cutoff (50 Hz), a visually determined cutoff frequency describing the frequency band containing the majority of the summed (visual inspection 1) or not-summed (visual inspection 2) GRF signal's frequency content, filtering the summed (99% signal power 1) or not-summed (99% signal power 2) GRF using a cutoff frequency retaining 99% of the signal power. The raw data method produced significantly shorter concentric phase times and significantly greater center of mass flight heights (∼3%), modified reactive strength indices (RSIMOD; ∼4%), power outputs (∼6%), and push-off distances (∼4%) than 99% signal power 1 and 2 (p < 0.05). Discrete GRF and phase-specific yank magnitudes were not different among methods (p ≥ 0.05). Importantly, no differences were detected between the raw data and 50 Hz methods for any variable (p > 0.05). Low-pass filtering is not necessary when analyzing GRF data from the CMVJ. However, a low-pass filter with a 50-Hz cutoff can remove noise without altering results when compared with raw data. Explicit methodological descriptions of filtering processes should always be provided to improve the integrity of future CMVJ analyses, comparisons among various studies' results, or both.


Assuntos
Benchmarking , Força Muscular , Humanos , Masculino
3.
Sports Biomech ; : 1-19, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947320

RESUMO

Dependent variables commonly studied during countermovement vertical jump (CMVJ) tests largely stem from male-only studies despite females'distinct energy storage and reutilisation strategies. This could limit progress among females seeking increased CMVJ performance through targeted changes in certain variables. We explored relationships between CMVJ performance metrics (jump height, modified reactive strength index, jump power, and takeoff momentum) and (a) temporal and force application variables and (b) inter-limb force and yank (i.e., rate of force development) asymmetry in 31 recreationally active females. Participants performed eight CMVJs while ground reaction force (GRF) data were obtained. Pearson product-moment correlation coefficients assessed the strength and direction of the associations. Twenty-six significant relationships (r ≥ ±0.357; p < 0.05) were detected across the CMVJ performance variables. The significantly correlated variables were generally isolated to only one of the four performance metrics. Only the percentage of concentric phase inter-limb force asymmetry was significantly associated with CMVJ performance, specifically jump power and takeoff momentum. Coaches and physical performance professionals should be aware of popular strategy variables' association or lack of association with commonly studied performance metrics when seeking to understand or improve specific CMVJ jumping abilities in females.

4.
Med Sci Sports Exerc ; 52(4): 993-1000, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31688643

RESUMO

Conflicting methodologies are used to define certain countermovement vertical jump (CMVJ) phases, which limits the identification of performance-enhancing factors (e.g., rate of force development). PURPOSE: We (a) utilized a joint power approach to define CMVJ phases that accurately describe body weight unloading (i.e., unweighting) and eccentric (i.e., braking) actions, which were combined with the robustly defined concentric (i.e., propulsion) phase, and (b) determined whether the phases can be identified using only ground reaction force (GRF) data. METHODS: Twenty-one men performed eight maximal CMVJs while kinematic and GRF data were obtained. Hip, knee, and ankle joint powers were calculated by multiplying net joint moments (obtained using inverse dynamics) by joint angular velocities. The net sum of the joint powers (JPSUM) was calculated to define phases by the preeminence of negative (i.e., net eccentric actions) or positive (i.e., net concentric actions) power where appropriate. Unloading, eccentric, and concentric phases were identified using JPSUM and linked to GRF and center of mass velocity features. RESULTS: Bland and Altman plots of the bias and 95% confidence intervals for the limits of agreement (LOA), intraclass correlation coefficients (ICC), and coefficients of variation (CV) indicated precise agreement for detecting the unloading (bias, 0.060 s; LOA, -0.110 to 0.229 s) and eccentric (bias, 0.012 s; LOA, -0.010 to 0.040 s) phases with moderate (ICC, 0.578; CV, 40.72%) and excellent (ICC, 0.993; CV, 2.18%) reliability, respectively. The eccentric phase should be divided into yielding (eccentric actions while accelerating downward) and braking (eccentric actions while decelerating downward) subphases for detailed assessments. CONCLUSION: CMVJ phases defined by combining joint and center of mass mechanics can be detected using only force platform data, enabling functionally relevant CMVJ assessments using instrumentation commonly available to practitioners.


Assuntos
Articulação do Tornozelo/fisiologia , Teste de Esforço/instrumentação , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Exercício Pliométrico , Adulto , Fenômenos Biomecânicos , Teste de Esforço/métodos , Humanos , Masculino , Estudos de Tempo e Movimento , Adulto Jovem
5.
J Sports Sci ; 37(12): 1318-1326, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30558481

RESUMO

It is unclear whether weighted vest (WV) use improves countermovement vertical jump (CMVJ) performance by enhancing stretch-shortening cycle (SSC) function via increased storage and utilisation of elastic strain energy. In is also unknown whether WV use stimulates different responses in men and women. WV effects on energy storage and utilisation during CMVJ were examined in men and women. Nine men (25 ± 3 y; 89.7 ± 18.7 kg; 1.8 ± 0.1 m) and 12 women (24 ± 3 y; 62.7 ± 10.3 kg; 1.6 ± 0.1 m) performed CMVJ wearing a WV with (loaded) and without (unloaded) 10% added mass while kinematic and ground reaction force (GRF) data were obtained. A longer eccentric sub-phase and increased storage of elastic strain energy occurred when loaded. Increased positive joint work occurred during the concentric portion of loaded CMVJ. Women exhibited less positive hip work and greater positive ankle work than men during the unloading and eccentric sub-phases, respectively. Joint work was similar between sexes during the concentric sub-phase, likely due to decreased trunk extension excursion in men when loaded. Women and men employ different SSC strategies during the CMVJ, though the different strategies do not alter energy storage or concentric mechanical output.


Assuntos
Peso Corporal , Músculo Esquelético/fisiologia , Exercício Pliométrico , Fatores Sexuais , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Tronco/fisiologia , Adulto Jovem
6.
J Appl Biomech ; 34(5): 403-409, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809083

RESUMO

The ability to rapidly complete a jump landing has received little attention in the literature despite the need for rapid performance in a number of sports. As such, our purpose was to investigate differences between groups of individuals who land quickly (FAST) and slowly (SLOW) relative to peak vertical ground reaction forces (vGRFs), loading rates, rates of vGRF attenuation, contributions to lower extremity mechanical energy absorption at the involved joints, and the onsets of preparatory joint flexion/dorsiflexion. Twenty-four healthy adults (26.1 [3.3] y, 75.7 [18.9] kg, 1.7 [0.1] m) were stratified into FAST and SLOW groups based on landing time across 8 jump-landing trials. Independent t tests (α = .05) and effect sizes (ESs; large ≥ 0.8) compared differences between groups. A greater rate of vGRF attenuation (P = .02; ES = 0.95) was detected in the FAST group. The FAST group also exhibited greater contributions to lower extremity energy absorption at the ankle (P = .03; ES = 0.98) and knee (P = .03; ES = 0.99) during loading and attenuation, respectively. The SLOW group exhibited greater contributions to energy absorption at the hip during loading (P = .02; ES = 1.10). Results suggest that individuals who land quickly utilize different energy absorption strategies than individuals who land slowly. Ultimately, the FAST group's strategy resulted in superior landing performance (more rapid landing time).


Assuntos
Desempenho Atlético/fisiologia , Fenômenos Biomecânicos/fisiologia , Extremidade Inferior/fisiologia , Amplitude de Movimento Articular/fisiologia , Esportes/fisiologia , Adulto , Teste de Esforço , Feminino , Voluntários Saudáveis , Humanos , Masculino
7.
J Appl Biomech ; 34(4): 291-297, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29485344

RESUMO

This study sought to identify kinetic and electromyographic subphase characteristics distinguishing good from poor jumpers during countermovement vertical jumps (CMVJs), as defined by the reactive strength index (RSI, CMVJ displacement divided by jump time; cutoff = 0.46 m·s-1). A total of 15 men (1.8 [0.6] m, 84.5 [8.5] kg, 24 [2] y) were stratified by RSI into good (n = 6; RSI = 0.57 [0.07] m·s-1) and poor (n = 9; RSI = 0.39 [0.06] m·s-1) performance groups. The following variables were compared between groups using independent t tests (α = .05) and Cohen's d effect sizes (d ≥ 0.8, large): jump height, propulsive impulse, eccentric rate of force development, and jump time, unloading, eccentric, and concentric subphase times, and average electromyographic amplitudes of 8 lower extremity muscles. Compared with the poor RSI group, the good RSI group exhibited a greater, though not statistically different CMVJ displacement (d = 1.07, P = .06). In addition, the good RSI group exhibited a significantly greater propulsive impulse (P = .04, d = 1.27) and a significantly more rapid unloading subphase (P = .04, d = 1.08). No other significant or noteworthy differences were detected. Enhanced RSI appears related to a quicker unloading phase, allowing a greater portion of the total jumping phase to be utilized generating positive net force. Poor jumpers should aim to use unloading strategies that emphasize quickness to enhance RSI during CMVJ.


Assuntos
Movimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Desempenho Atlético , Fenômenos Biomecânicos , Eletromiografia , Teste de Esforço , Humanos , Cinética , Extremidade Inferior/fisiologia , Masculino
8.
J Strength Cond Res ; 32(2): 304-312, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29369951

RESUMO

Harry, JR, Barker, LA, James, CR, and Dufek, JS. Performance differences among skilled soccer players of different playing positions during vertical jumping and landing. J Strength Cond Res 32(2): 304-312, 2018-Both jumping and landing performance of skilled soccer players is diminished when task demands are increased. However, it is unclear if performance changes are specific to players of certain playing positions. Therefore, we assessed jumping and landing performance among skilled soccer players of different playing positions. Twenty-five National Collegiate Athletic Association (NCAA) Division 1 male soccer players (179.5 ± 7.8 cm, 75.5 ± 7.1 kg, 19.7 ± 1.2 years) performed maximum effort vertical jump landings (VJLs), whereas vertical ground reaction force (vGRF) data were obtained. Participants were stratified into goalkeeping (GK), defensive (DEF), midfield (MID), and attacking (ATT) group according to their primary playing position. One-way analyses of variance (α = 0.05) and effect sizes (ESs; large ≥ 0.80) were used to compare differences among groups. The jumping phase variables evaluated were jump height, unloading and amortization vGRF magnitudes, eccentric rate of force development, and the reactive strength index. Landing phase variables included the peak vGRF magnitude, vGRF loading rate, vGRF attenuation rate, and landing time. No statistically significant differences were detected for any jumping or landing variable (p ≥ 0.05). However, a number of large magnitude differences were detected during landing after ES calculations. Specifically, greater peak vGRF magnitudes were detected in DEF vs. both MID (ES = 1.08) and ATT (ES = 0.93), a greater vGRF loading rate occurred in DEF vs. MID (ES = 0.93), and a greater vGRF attenuation rate occurred in DEF vs. both MID (ES = 1.00) and AT (ES = 0.80). It is concluded that highly skilled soccer players possess position-specific abilities with respect to the landing phase of VJL. Skilled soccer players might experience enhanced training outcomes after VJL training regimens tailored to the specific demands of their primary playing position.


Assuntos
Desempenho Atlético/fisiologia , Futebol/fisiologia , Adolescente , Teste de Esforço , Humanos , Masculino , Adulto Jovem
9.
J Strength Cond Res ; 32(1): 248-254, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28746248

RESUMO

Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.


Assuntos
Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Futebol/fisiologia , Adolescente , Atletas , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Masculino , Adulto Jovem
10.
J Strength Cond Res ; 31(4): 932-938, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27398922

RESUMO

Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Rotação , Futebol/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Strength Cond Res ; 31(7): 1780-1786, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27669194

RESUMO

Harry, JR, Barker, LA, Mercer, JA, and Dufek, JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA Division I male soccer players. J Strength Cond Res 31(7): 1780-1786, 2017-There is a wealth of research on impact force characteristics when landing from a jump. However, there are no data on impact forces during landing from a jump with an airborne rotation about the vertical axis. We examined impact force parameters in the vertical and horizontal axes during vertical jump (VJ) landings and VJ landings with a 180° rotation (VJR). Twenty-four Division I male soccer players performed 3 VJ and VJR landings on a dual-force platform system. Paired-samples t-tests (α = 0.05) compared differences in the first (F1) and second (F2) peak vertical ground reaction forces, times to F1 (tF1), F2 (tF2), and the end of the impact phase, vertical impulse, and anterior-posterior and medial-lateral force couples. Effect sizes (ES; large >0.8) were computed to determine the magnitude of the differences. Lower jump height (41.60 ± 4.03 cm, VJ landings; 39.40 ± 4.05 cm, VJR landings; p = 0.002; ES = 0.39), greater F2 (55.71 ± 11.95 N·kg, VJ; 68.16 ± 14.82 N·kg; p < 0.001; ES = 0.94), faster tF2 (0.057 ± 0.012 seconds, VJ; 0.047 ± 0.011 seconds, VJR; p = 0.001; ES = 0.89), greater anterior-posterior (0.06 ± 0.03 N·s·kg, VJ; 0.56 ± 0.15 N·s·kg, VJR; p < 0.001; ES = 1.83) and medial-lateral force couples (0.29 ± 0.11 N·s·kg, VJ; 0.56 ± 0.14 N·s·kg, VJR; p < 0.001; ES = 1.46) occurred during VJR landings. No other differences were identified. This kinetic analysis determined that landing from a jump with 180° airborne rotation is different than landing from a jump without an airborne rotation. Male Division I soccer players could benefit from increasing the volume of VJR landings during training to address the differences in jump height and force parameters compared with VJ landings.


Assuntos
Atletas , Futebol/fisiologia , Adolescente , Humanos , Cinética , Masculino , Rotação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...