Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896121

RESUMO

This editorial introduces our Special Issue entitled "Improving Fertilizer Use Efficiency-Methods and Strategies for the Future". The fertilizer use efficiency (FUE) is a measure of the potential of an applied fertilizer to increase the productivity and utilization of the nutrients present in the soil/plant system. FUE indices are mainly used to assess the effectiveness of nitrogen (N), phosphorus (P), and potassium (K) fertilization. This is due to the low efficiency of use of NPK fertilizers, their environmental side effects and also, in relation to P, limited natural resources. The FUE is the result of a series of interactions between the plant genotype and the environment, including both abiotic and biotic factors. A full recognition of these factors is the basis for proper fertilization in farming practice, aimed at maximizing the FUE. This Special Issue focuses on some key topics in crop fertilization. Due to specific goals, they can be grouped as follows: removing factors that limit the nutrient uptake of plants; improving and/or maintaining an adequate soil fertility; the precise determination of fertilizer doses and application dates; foliar application; the use of innovative fertilizers; and the adoption of efficient genotypes. The most important nutrient in crop production is N. Hence, most scientific research focuses on improving the nitrogen use efficiency (NUE). Obtaining high NUE values is possible, but only if the plants are well supplied with nitrogen-supporting nutrients. In this Special Issue, particular attention is paid to improving the plant supply with P and K.

2.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365294

RESUMO

The Soil Fertility Clock (SFC) concept is based on the assumption that the critical content (range) of essential nutrients in the soil is adapted to the requirements of the most sensitive plant in the cropping sequence (CS). This provides a key way to effectively control the productivity of fertilizer nitrogen (Nf). The production goals of a farm are set for the maximum crop yield, which is defined by the environmental conditions of the production process. This target can be achieved, provided that the efficiency of Nf approaches 1.0. Nitrogen (in fact, nitrate) is the determining yield-forming factor, but only when it is balanced with the supply of other nutrients (nitrogen-supporting nutrients; N-SNs). The condition for achieving this level of Nf efficiency is the effectiveness of other production factors, including N-SNs, which should be set at ≤1.0. A key source of N-SNs for a plant is the soil zone occupied by the roots. N-SNs should be applied in order to restore their content in the topsoil to the level required by the most sensitive crop in a given CS. Other plants in the CS provide the timeframe for active controlling the distance of the N-SNs from their critical range.

3.
Plants (Basel) ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890459

RESUMO

Based on a long-term experiment in Prague, established in 1954, we analyzed the effect of weather and seven fertilization treatments (mineral and manure treatments) on winter wheat grain yield (GY) and stability. In total, 23 seasons were analyzed, where a wheat crop followed a summer crop of potatoes. A regression analysis showed that, since the experiment started, there has been a significant increase in the annual daily maximum, average, and minimum temperature of 0.5 °C, and an increase in annual rainfall of 0.3 mm. Grain yield was positively associated with April precipitation, mean daily temperature in October, and daily maximum temperature in February. Yields were most stable between years with two fertilizer treatments that supplied a mean of 47 kg N ha-1yr-1, 54 kg P ha-1yr-1, and 108 kg K ha-1yr-1. The rate of N at which grain yield was optimized was determined according to the linear-plateau (LP) and quadratic response models as 44 kg N ha-1yr-1 for the long-strawed varieties and 87 kg N ha-1yr-1for short-strawed varieties. A gradual increase in yields was observed in all treatments, including the unfertilized control, which was attributed to improved varieties rather than to a changing climate.

4.
Plants (Basel) ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890489

RESUMO

Fertilizer Use Efficiency (FUE) is a measure of the potential of an applied fertilizer to increase its impact on the uptake and utilization of nitrogen (N) present in the soil/plant system. The productivity of N depends on the supply of those nutrients in a well-defined stage of yield formation that are decisive for its uptake and utilization. Traditionally, plant nutritional status is evaluated by using chemical methods. However, nowadays, to correct fertilizer doses, the absorption and reflection of solar radiation is used. Fertilization efficiency can be increased not only by adjusting the fertilizer dose to the plant's requirements, but also by removing all of the soil factors that constrain nutrient uptake and their transport from soil to root surface. Among them, soil compaction and pH are relatively easy to correct. The goal of new the formulas of N fertilizers is to increase the availability of N by synchronization of its release with the plant demand. The aim of non-nitrogenous fertilizers is to increase the availability of nutrients that control the effectiveness of N present in the soil/plant system. A wide range of actions is required to reduce the amount of N which can pollute ecosystems adjacent to fields.

5.
Plants (Basel) ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807612

RESUMO

Increasing the efficiency of nitrogen use (NUE) from mineral fertilizers is one of the most important priorities of modern agriculture. The objectives of the present study were to assess the role of different nitrogen (N), phosphorus (P) and sulfur (S) rates on maize grain yield (GY), crop residue biomass, NUE indices, N concentration in plants during the growing season, N management indices and to select the most suitable set of NUE indicators. The following factors were tested: band application of di-ammonium phosphate and ammonium sulphate mixture (NPS fertilizer at rates 0, 8.7, 17.4, 26.2 kg ha-1 of P) and different total N rates (0, 60, 120, 180 kg ha-1 of N). In each year of the study, a clear trend of increased GY after NP(S) band application was observed. A particularly positive influence of that factor was confirmed at the lowest level of N fertilization. On average, the highest GY values were obtained for N2P3 and N3P1 treatments. The total N uptake and NUE indices also increased after the band application. In addition, a trend of improved N remobilization efficiency and the N contribution of remobilized N to grain as a result of band application of NP(S) was observed. Among various NUE indices, internal N utilization efficiency (IE) exhibited the strongest, yet negative, correlation with GY, whereas IE was a function of the N harvest index.

6.
Environ Sci Pollut Res Int ; 27(5): 4769-4785, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845241

RESUMO

Concentration of trace metals (TMs) is one of the most crucial factors determining the quality of cereal grains. The aim of this study was to evaluate the effect of digestate, manure, and NPK fertilization on TM concentration in grains and straw of two cereal crops-winter wheat (WW) and spring barley (SB)-and TM transfer from soil to plants. The experiment was carried out between 2012 and 2016. Every year, the same treatment was used on each plot: control (without fertilization), digestate, digestate + straw, cattle slurry, and mineral NPK fertilization. In general, fertilization increased the concentration of TMs that belong to the micronutrient group (Zn, Cu, Fe), particularly after application of digestate and cattle slurry. At the same time, fertilization, regardless of the fertilizer type, led to an increase in Cd concentration in the grain of WW in comparison with the control. Despite the increase in Cd and micronutrient content as a result of fertilization, the concentration of elements remained below the applicable standards. Among TMs, only Pb content exceeded the European Union limits. The increased concentration of Pb was, however, an effect of other factors, rather than fertilization. The results clearly indicated that the biogas digestate from anaerobic codigestion of cattle slurry and agricultural residue could be utilized as fertilizer in agricultural applications without a risk of contaminating the food chain with TMs.


Assuntos
Fertilizantes , Hordeum , Metais/química , Minerais/química , Animais , Bovinos , Hordeum/metabolismo , Esterco , Minerais/metabolismo , Solo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...