Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059024

RESUMO

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Assuntos
Linfócitos B/metabolismo , Fatores de Transcrição NFATC/genética , Animais , Linfócitos B/virologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Ativação Viral , Latência Viral
2.
PLoS Pathog ; 14(7): e1007179, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052684

RESUMO

Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Transativadores/genética , Ativação Viral/genética , Variação Genética/genética , Herpesvirus Humano 4/genética , Humanos , Regiões Promotoras Genéticas/genética
3.
Oncotarget ; 8(27): 44266-44280, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574826

RESUMO

EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.


Assuntos
Crotonatos/farmacologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Isoxazóis/farmacologia , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/patologia , Toluidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Ciclina E/genética , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes myc , Humanos , Hidroxibutiratos , Leflunomida , Transtornos Linfoproliferativos/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Nitrilas , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Latência Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Virol ; 87(18): 10126-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23843639

RESUMO

All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.


Assuntos
Antivirais/metabolismo , Benzoquinonas/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Herpesvirus Humano 4/fisiologia , Lactamas Macrocíclicas/metabolismo , Proteínas Quinases/metabolismo , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Humanos , Mapeamento de Interação de Proteínas , Carga Viral , Cultura de Vírus
5.
J Virol ; 86(24): 13360-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23015717

RESUMO

The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor ß (TGF-ß) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 4/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ativação Viral , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Primers do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Imidazóis/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Piperazinas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pironas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
6.
J Virol ; 85(9): 4318-29, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325409

RESUMO

The Epstein-Barr virus (EBV) BRRF1 lytic gene product (Na) is encoded within the same immediate-early region as the BZLF1 (Z) and BRLF1(R) gene products, but its role during EBV infection has not been well defined. We previously showed that Na cooperates with the R protein to induce lytic gene expression in latently infected EBV-positive 293 cells, and in some EBV-negative cell lines it can activate the Z promoter in reporter gene assays. Here we show that overexpression of Na alone is sufficient to induce lytic gene expression in several different latently infected epithelial cell lines (Hone-Akata, CNE2-Akata, and AGS-Akata), while knockdown of endogenous Na expression reduces lytic gene expression. Consistent with its ability to interact with tumor necrosis factor receptor-associated factor 2 (TRAF2) in a yeast two-hybrid assay, we demonstrate that Na interacts with TRAF2 in cells. Furthermore, we show that TRAF2 is required for Na induction of lytic gene expression, that Na induces Jun N-terminal protein kinase (JNK) activation in a TRAF2-dependent manner, and that a JNK inhibitor abolishes the ability of Na to disrupt viral latency. Additionally, we show that Na and the tumor suppressor protein p53 cooperate to induce lytic gene expression in epithelial cells (including the C666-1 nasopharyngeal carcinoma cell line), although Na does not appear to affect p53 function. Together these data suggest that Na plays an important role in regulating the switch between latent and lytic infection in epithelial cells and that this effect requires both the TRAF2 and p53 cellular proteins.


Assuntos
Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/patogenicidade , Mapeamento de Interação de Proteínas , Fator 2 Associado a Receptor de TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Ligação Proteica
7.
J Virol ; 84(23): 12362-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861254

RESUMO

The Epstein-Barr virus immediate-early protein, BZLF1 (Z), initiates the switch between latent and lytic infection and plays an essential role in mediating viral replication. Z also inhibits expression of the major receptor for tumor necrosis factor (TNF), TNFR1, thus repressing TNF cytokine signaling, but the mechanism for this effect is unknown. Here, we demonstrate that Z prevents both C/EBPα- and C/EBPß-mediated activation of the TNFR1 promoter (TNFR1p) by interacting directly with both C/EBP family members. We show that Z interacts directly with C/EBPα and C/EBPß in vivo and that a Z mutant altered at alanine residue 204 in the bZIP domain is impaired for the ability to interact with both C/EBP proteins. Furthermore, we find that the Z(A204D) mutant is attenuated in the ability to inhibit the TNFR1p but mediates lytic viral reactivation and replication in vitro in 293 cells as well as wild-type Z. Although Z does not bind directly to the TNFR1p in EMSA studies, chromatin immunoprecipitation studies indicate that Z is complexed with this promoter in vivo. The Z(A204D) mutant has reduced interaction with the TNFR1p in vivo but is similar to wild-type Z in its ability to complex with the IL-8 promoter. Finally, we show that the effect of Z on C/EBPα- and C/EBPß-mediated activation is promoter dependent. These results indicate that Z modulates the effects of C/EBPα and C/EBPß in a promoter-specific manner and that in some cases (including that of the TNFR1p), Z inhibits C/EBPα- and C/EBPß-mediated activation.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Transativadores/metabolismo , Ativação Viral/fisiologia , Replicação Viral/fisiologia , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Herpesvirus Humano 4 , Humanos , Immunoblotting , Imunoprecipitação , Mutagênese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transativadores/genética , Transativadores/fisiologia
8.
Proc Natl Acad Sci U S A ; 107(7): 3146-51, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133771

RESUMO

EBV causes infectious mononucleosis and is associated with certain malignancies. EBV nuclear antigen 1 (EBNA1) mediates EBV genome replication, partition, and transcription, and is essential for persistence of the viral genome in host cells. Here we demonstrate that Hsp90 inhibitors decrease EBNA1 expression and translation, and that this effect requires the Gly-Ala repeat domain of EBNA1. Hsp90 inhibitors induce the death of established, EBV-transformed lymphoblastoid cell lines at doses nontoxic to normal cells, and this effect is substantially reversed when lymphoblastoid cell lines are stably infected with a retrovirus expressing a functional EBNA1 mutant lacking the Gly-Ala repeats. Hsp90 inhibitors prevent EBV transformation of primary B cells, and strongly inhibit the growth of EBV-induced lymphoproliferative disease in SCID mice. These results suggest that Hsp90 inhibitors may be particularly effective for treating EBV-induced diseases requiring the continued presence of the viral genome.


Assuntos
Benzoquinonas/farmacologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Herpesvirus Humano 4 , Lactamas Macrocíclicas/farmacologia , Transtornos Linfoproliferativos/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Primers do DNA/genética , Dipeptídeos/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Imunoprecipitação , Lactamas Macrocíclicas/uso terapêutico , Transtornos Linfoproliferativos/virologia , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...