Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 17(7): 665-680, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483333

RESUMO

The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Software , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Conformação Proteica
2.
Science ; 366(6468): 1024-1028, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754004

RESUMO

Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.


Assuntos
Fosfatos de Poli-Isoprenil/metabolismo , Engenharia de Proteínas , Multimerização Proteica , Proteínas/química , Sesquiterpenos/metabolismo , Repetição de Anquirina , Sítios de Ligação , Técnicas Biossensoriais , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Ligantes , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Proteínas/genética , Proteínas/metabolismo
3.
Biol Open ; 7(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037883

RESUMO

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

4.
J Phys Chem B ; 122(21): 5389-5399, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29401388

RESUMO

Computationally modeling changes in binding free energies upon mutation (interface ΔΔ G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface ΔΔ G values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting nonlinear reweighting model improved the agreement with experimentally determined interface ΔΔ G values but also highlighted the necessity of future energy function improvements.


Assuntos
Modelos Moleculares , Proteínas/química , Complexo Antígeno-Anticorpo , Entropia , Método de Monte Carlo , Mutagênese , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Eletricidade Estática
5.
Methods Mol Biol ; 1414: 197-211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27094293

RESUMO

In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.


Assuntos
Luz , Conformação Proteica , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Mutação , Espectrofotometria Ultravioleta
6.
PLoS One ; 10(9): e0130433, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26335248

RESUMO

The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.


Assuntos
Benchmarking , Conjuntos de Dados como Assunto , Internet , Modelos Moleculares , Proteínas/química , Aminoácidos/química , Evolução Química , Mutação , Proteínas/genética , Termodinâmica
7.
Nat Methods ; 12(5): 465-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25799440

RESUMO

Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma , Edição de RNA/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , DNA/genética , Ensaio de Imunoadsorção Enzimática , Marcadores Genéticos , Fatores de Transcrição/genética
8.
Nat Biotechnol ; 29(2): 143-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21179091

RESUMO

Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.


Assuntos
Técnicas de Química Combinatória/métodos , Engenharia Genética , Mutagênese Sítio-Dirigida/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA/genética , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genoma , Humanos , Células K562 , Dados de Sequência Molecular , Receptores CCR5/genética , Fator A de Crescimento do Endotélio Vascular/genética , Xanthomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...