Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 370(1977): 4927-43, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22987036

RESUMO

We report room-temperature ferromagnetism (FM) in highly conducting, transparent anatase Ti(1-x)Ta(x)O(2) (x∼0.05) thin films grown by pulsed laser deposition on LaAlO(3) substrates. Rutherford backscattering spectrometry (RBS), X-ray diffraction, proton-induced X-ray emission, X-ray absorption spectroscopy (XAS) and time-of-flight secondary-ion mass spectrometry indicated negligible magnetic contaminants in the films. The presence of FM with concomitant large carrier densities was determined by a combination of superconducting quantum interference device magnetometry, electrical transport measurements, soft X-ray magnetic circular dichroism (SXMCD), XAS and optical magnetic circular dichroism, and was supported by first-principles calculations. SXMCD and XAS measurements revealed a 90 per cent contribution to FM from the Ti ions, and a 10 per cent contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites, though carrier activation was only 50 per cent at 5 per cent Ta concentration, implying compensation by cationic defects. The role of the Ti vacancy (V(Ti)) and Ti(3+) was studied via XAS and X-ray photoemission spectroscopy, respectively. It was found that, in films with strong FM, the V(Ti) signal was strong while the Ti(3+) signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localized magnetic moments, V(Ti) sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to FM in wide-band-gap semiconducting oxides without any magnetic elements.

2.
Nat Commun ; 2: 188, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21304517

RESUMO

There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic phases at the interfaces between complex oxides, in particular between two non-magnetic insulators LaAlO(3) and SrTiO(3), have stimulated the oxide community. However, no EPS has been observed in this system despite a theoretical prediction. Here, we report an EPS state at the LaAlO(3)/SrTiO(3) interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a (superconductor like) diamagnetic/paramagnetic phase below 60 K. The EPS is due to the selective occupancy (in the form of 2D-nanoscopic metallic droplets) of interface sub-bands of the nearly degenerate Ti orbital in the SrTiO(3). The observation of this EPS demonstrates the electronic and magnetic phenomena that can emerge at the interface between complex oxides mediated by the Ti orbital.


Assuntos
Compostos de Alumínio/química , Eletrônica/métodos , Lantânio/química , Óxidos/química , Transição de Fase , Estrôncio/química , Titânio/química , Condutividade Elétrica , Magnetismo , Espectrometria de Massa de Íon Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...