Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; : e2300099, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926697

RESUMO

Extracellular vesicles (EVs) influence cell phenotypes and functions via protein, nucleic acid, and lipid cargoes. EVs are heterogeneous, due to diverse biogenesis mechanisms that remain poorly understood. Our previous study revealed that the endoplasmic reticulum (ER) membrane contact site (MCS) linker protein vesicle associated protein associated protein A (VAP-A) drives biogenesis of a subset of RNA-enriched EVs. Here, we examine the protein content of VAP-A-regulated EVs. Using label-free proteomics, we identified down- and upregulated proteins in small EVs (SEVs) purified from VAP-A knockdown (KD) colon cancer cells. Gene set enrichment analysis (GSEA) of the data revealed protein classes that are differentially sorted to SEVs dependent on VAP-A. Search Tool for the Retrieval of Reciprocity Genes (STRING) protein-protein interaction network analysis of the RNA-binding protein (RBP) gene set identified several RNA functional machineries that are downregulated in VAP-A KD SEVs, including ribosome, spliceosome, mRNA surveillance, and RNA transport proteins. We also observed downregulation of other functionally interacting protein networks, including cadherin-binding, unfolded protein binding, and ATP-dependent proteins.

2.
J Extracell Vesicles ; 12(11): e12366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885043

RESUMO

Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant. In addition, RNA-binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV-containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra- and extra-vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination.


Assuntos
Proteínas Argonautas , Vesículas Extracelulares , MicroRNAs , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteínas Argonautas/metabolismo
3.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502906

RESUMO

Extracellular vesicles (EVs) influence cell phenotypes and functions via protein, nucleic acid and lipid cargoes. EVs are heterogeneous, due to diverse biogenesis mechanisms that remain poorly understood. Our previous study revealed that the endoplasmic reticulum (ER) membrane contact site (MCS) linker protein VAP-A drives biogenesis of a subset of RNA-enriched EVs. Here, we examine the protein content of VAP-A-regulated EVs. Using label-free proteomics, we identified down- and up-regulated proteins in sEVs purified from VAP-A knockdown (KD) colon cancer cells. Gene set enrichment analysis (GSEA) of the data revealed protein classes that are differentially sorted to SEVs dependent on VAP-A. STRING protein-protein interaction network analysis of the RNA-binding protein (RBP) gene set identified several RNA functional machineries that are downregulated in VAP-A KD EVs, including ribosome, spliceosome, mRNA surveillance, and RNA transport proteins. We also observed downregulation of other functionally interacting protein networks, including cadherin-binding, unfolded protein binding, and ATP-dependent proteins.

4.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961472

RESUMO

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Humanos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , RNA/metabolismo
5.
Dev Cell ; 57(8): 974-994.e8, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421371

RESUMO

RNA transfer via extracellular vesicles (EVs) influences cell phenotypes; however, lack of information regarding biogenesis of RNA-containing EVs has limited progress in the field. Here, we identify endoplasmic reticulum membrane contact sites (ER MCSs) as platforms for the generation of RNA-containing EVs. We identify a subpopulation of small EVs that is highly enriched in RNA and regulated by the ER MCS linker protein VAP-A. Functionally, VAP-A-regulated EVs are critical for miR-100 transfer between cells and in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed reductions in the EV biogenesis lipid ceramide. Knockdown of the VAP-A-binding ceramide transfer protein CERT led to similar defects in EV RNA content. Imaging experiments revealed that VAP-A promotes luminal filling of multivesicular bodies (MVBs), CERT localizes to MVBs, and the ceramide-generating enzyme neutral sphingomyelinase 2 colocalizes with VAP-A-positive ER. We propose that ceramide transfer via VAP-A-CERT linkages drives the biogenesis of a select RNA-containing EV population.


Assuntos
Vesículas Extracelulares , Complexo de Golgi , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Vesículas Extracelulares/metabolismo , Complexo de Golgi/metabolismo , Proteínas Serina-Treonina Quinases , RNA/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37008559

RESUMO

The mechanisms by which cytoplasmic cargoes such as RNAs are incorporated into extracellular vesicles (EVs) are poorly understood. In a recent article published in Developmental Cell, we describe a novel function of endoplasmic reticulum membrane contact sites (ER MCS) in regulating biogenesis of RNA-containing EVs (Barman et al., 2022). We identified the ER MCS tether protein VAP-A and the ceramide transporter CERT as key drivers of this process. VAP-A depletion and overexpression produced corresponding changes in the overall number and RNA content of secreted EVs. Further sub-fractionation of small EVs from VAP-A depleted cells revealed a distinct loss in a specific subset of dense, RNA-loaded small EVs that are critical for the transfer of miR-100 to recipient cells. Cell imaging data confirmed the loss of RNA and RNA binding proteins (RBPs) in VAP-A-knockdown multivesicular bodies. Lipid analysis of VAP-A-knockdown EVs revealed decreases in ceramides, which are known to affect EV biogenesis. Depletion of the ceramide transfer protein CERT, which interacts with its binding partner VAP-A at ER MCS, leads to similar defects in EV number and RNA content as VAP-A-knockdown. These data suggest a model for ER MCS as platforms for biogenesis of a key EV population via ceramide transfer and RNA loading.

7.
Life Sci Alliance ; 3(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015087

RESUMO

microRNAs are short regulatory RNAs in metazoan cells. Regulation of miRNA activity and abundance is evident in human cells where availability of target messages can influence miRNA biogenesis by augmenting the Dicer1-dependent processing of precursors to mature microRNAs. Requirement of subcellular compartmentalization of Ago2, the key component of miRNA repression machineries, for the controlled biogenesis of miRNPs is reported here. The process predominantly happens on the polysomes attached with the endoplasmic reticulum for which the subcellular Ago2 trafficking is found to be essential. Mitochondrial tethering of endoplasmic reticulum and its interaction with endosomes controls Ago2 availability. In cells with depolarized mitochondria, miRNA biogenesis gets impaired, which results in lowering of de novo-formed mature miRNA levels and accumulation of miRNA-free Ago2 on endosomes that fails to interact with Dicer1 and to traffic back to endoplasmic reticulum for de novo miRNA loading. Thus, mitochondria by sensing the cellular context regulates Ago2 trafficking at the subcellular level, which acts as a rate-limiting step in miRNA biogenesis process in mammalian cells.


Assuntos
Proteínas Argonautas/metabolismo , Retículo Endoplasmático/metabolismo , Polirribossomos/metabolismo , Transporte Proteico/genética , Ribonucleoproteínas Citoplasmáticas Pequenas/biossíntese , Animais , Proteínas Argonautas/genética , RNA Helicases DEAD-box/metabolismo , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/genética , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Corpos Multivesiculares/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Transfecção
8.
Mol Cell Biol ; 37(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27895152

RESUMO

MicroRNA (miRNA)-mediated repression controls expression of more than half of protein-coding genes in metazoan animals. Translation repression is associated with target mRNA degradation initiated by decapping and deadenylation of the repressed mRNAs. Earlier evidence suggests the endoplasmic reticulum (ER) as the site where microRNPs (miRNPs) interact with their targets before translation repression sets in, but the subcellular location of subsequent degradation of miRNA-repressed messages is largely unidentified. Here, we explore the subcellular distribution of essential components of degradation machineries of miRNA-targeted mRNAs. We have noted that interaction of target mRNAs with AGO2 protein on the ER precedes the relocalization of repressed messages to multivesicular bodies (MVBs). The repressed messages subsequently get deadenylated, lose their interaction with AGO2, and become decapped. Blocking maturation of endosomes to late endosome and MVBs by targeting the endosomal protein HRS uncouples miRNA-mediated translation repression from target RNA degradation. HRS is also targeted by the intracellular parasite Leishmania donovani, which curtails the HRS level in infected cells to prevent uncoupling of mRNA-AGO2 interaction, preventing degradation of translationally repressed messages, and thus stops recycling of miRNPs preengaged in repression.


Assuntos
Mamíferos/genética , MicroRNAs/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , Ribonucleoproteínas/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Leishmania/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , MicroRNAs/metabolismo , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Fosfoproteínas/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Biol Chem ; 290(41): 24650-6, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26304123

RESUMO

MicroRNA (miRNA) binds to the 3'-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state.


Assuntos
Proteínas Argonautas/metabolismo , Retículo Endoplasmático/metabolismo , MicroRNAs/metabolismo , Biossíntese de Proteínas/genética , Animais , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Camundongos , MicroRNAs/genética , Polirribossomos/metabolismo , Ligação Proteica , Transporte Proteico , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...