Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402421, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007248

RESUMO

The increasing demand for clean hydrogen production over fossil fuels necessitates the development of sustainable piezoelectrochemical methods that can overcome the limitations of conventional electrocatalytic and photocatalytic approaches. In this regard, existing piezocatalysts face challenges related to their low piezoelectricity or active site coverage for hydrogen evolution reaction (HER). Driven by global environmental concerns, there is a compelling push to engineer practical materials for highly efficient HER. Herein, monoelemental 2D tellurium (Te) is presented as a class of layered chalcogenide with a non-centrosymmetric crystal structure (P3121 space group). The refined Te nanosheets demonstrate an unprecedented highly efficient H2 production rate ≈9000 µmol g-1 h-1 under ultrasonic mechanical vibration due to built-in piezo-potential in the system. The remarkable piezocatalytic performance of Te nanosheets arises from a synergistic interplay between their semi-metallic nature, favorable free energy landscape, enhanced electrical conductivity and outstanding piezoelectricity. As a proof of concept, the theoretical approach based on Density Functional Theory (DFT) validates the findings due to the gradual exposure of active sites on the Te nanosheets leading to a self-optimized catalytic performance for hydrogen generation. Therefore, mechanically driven Te emerges as a promising piezocatalyst with the potential to revolutionize highly efficient and sustainable technology for futuristic applications.

2.
J Colloid Interface Sci ; 674: 587-602, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38945026

RESUMO

Bifunctional electrode materials are highly desirable for meeting increasing global energy demands and mitigating environmental impact. However, improving the atom-efficiency, scalability, and cost-effectiveness of storage systems, as well as optimizing conversion processes to enhance overall energy utilization and sustainability, remains a significant challenge for their application. Herein, we devised an optimized, facile, economic, and scalable synthesis of large area (cm2), ultrathin (∼2.9 ± 0.3 nm) electroactive nanosheet of ß-Ni(OH)2, which acted as bifunctional electrode material for charge storage and oxygen evolution reaction (OER). The ß-Ni(OH)2 nanosheet electrode shows the volumetric capacity of 2.82 Ah.cm-3(0.82 µAh.cm-2) at the current density of 0.2 mA.cm-2. The device shows a high capacity of 820 mAh.cm-3 with an ultrahigh volumetric energy density of 0.33 Wh.cm-3 at 275.86 W.cm-3 along with promising stability (30,000 cycles). Furthermore, the OER activity of ultrathin ß-Ni(OH)2 exhibits an overpotential (η10) of 308 mV and a Tafel value of 42 mV dec-1 suggesting fast reaction kinetics. The mechanistic studies are enlightened through density functional theory (DFT), which reveals that additional electronic states near the Fermi level enhance activity for both capacitance and OER.

3.
Mater Horiz ; 11(9): 2217-2229, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38416145

RESUMO

Oxygen vacancy engineering has recently been gaining much interest as the charging effect it induces in a material can be used for varied applications. Usually, semiconductor materials act poorly in electrocatalysis, particularly in the nitrogen reduction reaction (NRR), owing to their inherent charge deficit and huge band gap. Vacancy introduction can be a viable material engineering route to make use of these materials for the NRR. However, a detailed investigation of the vacancy-type and its role for the structural reorientation and charge redistribution of a material is lagging in the field of NRRs. This work thus focuses on the synthesis of oxygen vacancy-engineered SnO2 with a gradual structural transformation from in-plane (iov) to bridge-type oxygen vacancy (bov) density. Consequently, the electron occupancy of the sp3d hybrid orbital changes, leading to an upshifted valence band maxima towards the Fermi level. This has a profound effect on the nature of N2 adsorption and the extent of NN bond polarization. Sn atoms adjacent to the bov are found to have a fair density of dangling charges that accomplish the NRR process at a comparatively low overpotential and determine the binding strength of the intermediates on the active site. The obscured yet stable reaction intermediates are thereby identified with in situ ATR-IR studies. A restricted hydrogen evolution reaction Faradaic on the Sn-site (favored over O-atoms) results in a Faradaic efficiency of 48.5%, which is better than that reported in all the literature reports on SnO2 for the NRR. This study thus unveils sufficient insights into the role of oxygen vacancies in a crystal as well as electronic structural alteration of SnO2 and the effect of active sites on the rate kinetics of the NRR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...