Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23562, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173535

RESUMO

A complete chemical analysis of significant intermolecular interactions of l-Valine (L-Val) and l-Phenylalanine (L-Phe) with Mephenesin (MEPN) molecules in aqueous solution has been studied by different physicochemical methodologies at various temperatures (T = 298.15 K-313.15 K at an interval of 5 K) and concentrations (0.001 mol kg-1, 0.003 mol kg-1, 0.005 mol kg-1) of aqueous MEPN solution. The limiting apparent molar volume (φV0) and experimental slope (SV*) values are found from the equation of Masson, viscosity A and B-coefficient determined using the equation of Jones-Doles, molar refraction (RM) and limiting molar refraction (RM0) derived by the Lorentz-Lorenz equation, express that in our experimental solution of amino acids (AAs) in aqueous MEPN, the solute-solvent interaction predominates over the solute-solute and solvent-solvent interactions for these ternary solutions. These are also justified by the measurement of various thermodynamic parameters, free energy of activation of viscous flow per mole of solvent(Δµ1°#) and solute (Δµ2°#), activation of viscous flow of enthalpies (ΔH°#) and entropies (ΔS°#). The characteristics of structure-breaking of solutes in the aqueous drug solution have been identified by Hepler's method and dB/dT value. The spectroscopic methods like UV-visible and proton-NMR studies help to explicate the strong AA-MEPN interactions in the solution phase and obtain a good correlation with theoretical studies. Theoretical investigations are checked to authenticate the experimental observations and according to both studies, L-Phe-MEPN interaction is greater than L-Val-MEPN interaction. The experimental and correlated research data are useful for the development of model combinations of AAs with drug molecules in pharmaceutical and medicinal chemistry.

2.
ACS Omega ; 7(49): 44698-44710, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530228

RESUMO

The goal of this study is to fabricate bioinspired metal oxide nanocubes from lemon peel extract in an environmentally friendly manner and evaluate its impact on environmental remediation. In neutral pH, the degradation kinetics of methylene blue dye (MB) in the aqueous phase was investigated using iron oxide nanoparticles as a catalyst. The obtained results revealed that under optimum conditions, synthesized Fe2O3 nanoparticles (IONPs) offered ultrafast dark Fenton-like reaction to degrade MB. The size, morphological structures, and stability were confirmed through dynamic light scattering, field emission scanning electron microscopy, X-ray diffraction, and ζ potential analysis. The overall environmental impact of the process was assessed by growing wheat plants with treated wastewater and evaluating their biochemical attributes. Antibacterial activity was investigated against Gram-positive (Bacillus megaterium, Bacillus subtilis) and Gram-negative (Escherichia coli, Salmonella typhimurium) aerobics and Gram-positive cocci (Staphylococcus aureus). The antifungal activity was measured against Fusarium solani by spore germination inhibition and zone inhibition of fungal pathogens for different nanocube concentrations.

3.
Environ Sci Technol ; 40(3): 1035-41, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509354

RESUMO

A novel and effective system was developed for the complete treatment of NOx from flue gases. The system consisted of photocatalytic or ozone oxidation of NOx, followed by scrubbing and biological denitrification. Maximum photocatalytic oxidation of NOx was achieved while using powdered TiO2 at a catalytic loading rate of 10 g/h, relative humidity of 50%, and a space time of 10 s. The used catalyst was regenerated and reused. A total of 72% of oxidized NO was recovered as HNO3/HNO2 in the regeneration process. Stoichiometrically, 10% excess ozone was able to affect 100% oxidation of NO to NO2. Presence of SO2 adversely influenced the oxidation of NO by ozone. The scrubbing of NO was effective with distilled water. Heterotrophic denitrifiers were able to denitrify the leachate with an efficiency of 90%, using sewage (COD 450 mg/L) as electron donor. The new integrated treatment system seems to be a promising alternative for complete treatment of NOx from flue gases.


Assuntos
Poluição do Ar/prevenção & controle , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/isolamento & purificação , Catálise , Indústrias , Oxidantes Fotoquímicos/química , Oxirredução , Ozônio/química , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...