Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571804

RESUMO

Many large carnivores, despite widespread habitat alteration, are rebounding in parts of their former ranges after decades of persecution and exploitation. Cougars (Puma concolor) are apex predator with their remaining northern core range constricted to mountain landscapes and areas of western North America; however, cougar populations have recently started rebounding in several locations across North America, including northward in boreal forest landscapes. A camera-trap survey of multiple landscapes across Alberta, Canada, delineated a range edge; within this region, we deployed an array of 47 camera traps in a random stratified design across a landscape spanning a gradient of anthropogenic development relative to the predicted expansion front. We completed multiple hypotheses in an information-theoretic framework to determine if cougar occurrence is best explained by natural land cover features, anthropogenic development features, or competitor and prey activity. We predicted that anthropogenic development features from resource extraction and invading white-tailed deer (Odocoileus virgianius) explain cougar distribution at this boreal range edge. Counter to our predictions, the relative activity of native prey, predominantly snowshoe hare (Lepus americanus), was the best predictor of cougar occurrence at this range edge. Small-bodied prey items are particularly important for female and sub-adult cougars and may support breeding individuals in the northeast boreal forest. Also, counter to our predictions, there was not a strong relationship detected between cougar occurrence and gray wolf (Canis lupus) activity at this range edge. However, further investigation is recommended as the possibility of cougar expansion into areas of the multi-prey boreal system, where wolves have recently been controlled, could have negative consequences for conservation goals in this region (e.g. the recovery of woodland caribou [Rangifer tarandus caribou]). Our study highlights the need to monitor contemporary distributions to inform conservation management objectives as large carnivores recover across North America.

2.
Ecol Evol ; 14(3): e11012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469043

RESUMO

Interspecific foraging associations (IFAs) are biological interactions where two or more species forage in association with each other. Climate-induced reductions in Arctic sea ice have increased polar bear (Ursus maritimus) foraging in seabird colonies, which creates foraging opportunities for avian predators. We used drone video of bears foraging within a common eider (Somateria mollissima) colony on East Bay Island (Nunavut, Canada) in 2017 to investigate herring gull (Larus argentatus) foraging in association with bears. We recorded nest visitation by gulls following n = 193 eider flushing events from nests during incubation. The probability of gulls visiting eider nests increased with higher number of gulls present (ß = 0.14 ± 0.03 [SE], p < .001) and for nests previously visited by a bear (ß = 1.14 ± 0.49 [SE], p < .02). In our model examining the probability of gulls consuming eggs from nests, we failed to detect statistically significant effects for the number of gulls present (ß = 0.09 ± 0.05 [SE], p < .07) or for nests previously visited by a bear (ß = -0.92 ± 0.71 [SE], p < .19). Gulls preferred to visit nests behind bears (χ2 = 18, df = 1, p < .0001), indicating gulls are risk averse in the presence of polar bears. Our study provides novel insights on an Arctic IFA, and we present evidence that gulls capitalize on nests made available due to disturbance associated with foraging bears, as eiders disturbed off their nest allow gulls easier access to eggs. We suggest the IFA between gulls and polar bears is parasitic, as gulls are consuming terrestrial resources which would have eventually been consumed by bears. This finding has implications for estimating the energetic contribution of bird eggs to polar bear summer diets in that the total number of available clutches to consume may be reduced due to avian predators.

3.
Sci Total Environ ; 915: 169285, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103612

RESUMO

Understanding mammalian responses to anthropogenic disturbance is challenging, as ecological processes and the patterns arising therefrom notoriously change across spatial and temporal scales, and among different landscape contexts. Responses to local scale disturbances are likely influenced by landscape context (e.g., overall landscape-level disturbance, landscape-level productivity). Hierarchical approaches considering small-scale sampling sites as nested holons within larger-scale landscapes, which constrain processes in lower-level holons, can potentially explain differences in ecological processes between multiple locations. We tested hypotheses about mammal responses to disturbance and interactions among holons using collected images from 957 camera sites across 9 landscapes in Alberta from 2007 to 2020 and examined occurrence for 11 mammal species using generalized linear mixed models. White-tailed deer occurred more in higher disturbed sites within lower disturbed landscapes (ß = -0.30 [-0.4 to -0.15]), whereas occurrence was greater in highly disturbed sites within highly disturbed landscapes for moose (ß = 0.20 [0.09-0.31]), coyote (ß = 0.20 [0.08-0.26]), and lynx (ß = 0.20 [0.07-0.26]). High disturbance sites in high productivity landscapes had higher occurrence of black bears (ß = -0.20 [-0.46 to -0.01]), lynx (ß = -0.70 [-0.97 to -0.34]), and wolves (ß = -0.50 [-0.73 to -0.21]). Conversely, we found higher probability of occurrence in low productivity landscapes with increasing site disturbance for mule deer (ß = 0.80 [0.39-1.14]), and white-tailed deer (ß = 0.20 [0.01-0.47]). We found the ecological context created by aggregate sums (high overall landscape disturbance), and by subcontinental hydrogeological processes in which that landscape is embedded (high landscape productivity), alter mammalian responses to anthropogenic disturbance at local scales. These responses also vary by species, which has implications for large-scale conservation planning. Management interventions must consider large-scale geoclimatic processes and geographic location of a landscape when assessing wildlife responses to disturbance.


Assuntos
Cervos , Lynx , Lobos , Animais , Ecossistema , Efeitos Antropogênicos
4.
R Soc Open Sci ; 10(10): 221108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37800157

RESUMO

Several predator-prey systems are in flux as an indirect result of climate change. In the Arctic, earlier sea-ice loss is driving polar bears (Ursus maritimus) onto land when many colonial nesting seabirds are breeding. The result is a higher threat of nest predation for birds with potential limited ability to respond. We quantified heart rate change in a large common eider (Somateria mollissima) breeding colony in the Canadian Arctic to explore their adaptive capacity to keep pace with the increasing risk of egg predation by polar bears. Eiders displayed on average higher heart rates from baseline when polar bears were within their field of view. Moreover, eiders were insensitive to variation in the distance bears were to their nests, but exhibited mild bradycardia (lowered heart rate) the longer the eider was exposed to the bear given the hen's visibility. Results indicate that a limited ability to assess the risks posed by polar bears may result in long-term fitness consequences for eiders from the increasing frequency in interactions with this predator.

5.
Sci Rep ; 13(1): 947, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653478

RESUMO

Imagery from drones is becoming common in wildlife research and management, but processing data efficiently remains a challenge. We developed a methodology for training a convolutional neural network model on large-scale mosaic imagery to detect and count caribou (Rangifer tarandus), compare model performance with an experienced observer and a group of naïve observers, and discuss the use of aerial imagery and automated methods for large mammal surveys. Combining images taken at 75 m and 120 m above ground level, a faster region-based convolutional neural network (Faster-RCNN) model was trained in using annotated imagery with the labels: "adult caribou", "calf caribou", and "ghost caribou" (animals moving between images, producing blurring individuals during the photogrammetry processing). Accuracy, precision, and recall of the model were 80%, 90%, and 88%, respectively. Detections between the model and experienced observer were highly correlated (Pearson: 0.96-0.99, P value < 0.05). The model was generally more effective in detecting adults, calves, and ghosts than naïve observers at both altitudes. We also discuss the need to improve consistency of observers' annotations if manual review will be used to train models accurately. Generalization of automated methods for large mammal detections will be necessary for large-scale studies with diverse platforms, airspace restrictions, and sensor capabilities.


Assuntos
Inteligência Artificial , Rena , Animais , Bovinos , Dispositivos Aéreos não Tripulados , Software , Redes Neurais de Computação
6.
Sci Rep ; 12(1): 18804, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335150

RESUMO

Aerial drones are increasingly being used as tools for ecological research and wildlife monitoring in hard-to-access study systems, such as in studies of colonial-nesting birds. Despite their many advantages over traditional survey methods, there remains concerns about possible disturbance effects that standard drone survey protocols may have on bird colonies. There is a particular gap in the study of their influence on physiological measures of stress. We measured heart rates of incubating female common eider ducks (Somateria mollissima) to determine whether our drone-based population survey affected them. To do so, we used heart-rate recorders placed in nests to quantify their heart rate in response to a quadcopter drone flying transects 30 m above the nesting colony. Eider heart rate did not change from baseline (measured in the absence of drone survey flights) by a drone flying at a fixed altitude and varying horizontal distances from the bird. Our findings suggest that carefully planned drone-based surveys of focal species have the potential to be carried out without causing physiological impacts among colonial-nesting eiders.


Assuntos
Patos , Dispositivos Aéreos não Tripulados , Animais , Feminino , Patos/fisiologia , Aves , Animais Selvagens , Organismos Aquáticos
7.
Mol Ecol ; 28(21): 4825-4838, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31578780

RESUMO

Conspecific brood parasitism allows females to exploit other females' nests and enhance their reproductive output. Here, we test a recent theoretical model of how host females gain inclusive fitness from brood parasitism. High levels of relatedness between host and parasitizer can be maintained either by: (a) kin recognizing and parasitizing each other as a form of cooperative breeding or (b) natal philopatry and nest site fidelity facilitating the formation of kin groups, thereby increasing the probability of parasitism between relatives nesting in close proximity. To address these two hypotheses we genotyped feathers and hatch membranes of common eiders (Somateria mollissima) from western Hudson Bay, Canada, using a noninvasive sampling methodology. We found that most instances of brood parasitism do result in inclusive fitness gains. Furthermore, females with failed nests moved an average of 492 m from their previous year's nest site, while successful females only moved an average of 13 m. Therefore, we observed host-parasite relatedness can occur at levels higher than would be expected by chance even in the absence of kin grouping, suggesting that closely related females nesting near one another is not essential to maintain high host-parasitizer relatedness. In addition, kin grouping is only a transient phenomenon that cannot occur every year due to the propensity for females of failed nests to nest farther away from their nest site in subsequent years than females with successful nests, which provides support for kin recognition as a more likely mechanism to maintain high host-parasitizer relatedness over time.


Assuntos
Patos/parasitologia , Interações Hospedeiro-Parasita/genética , Simbiose/genética , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/parasitologia , Canadá , Patos/genética , Feminino , Genótipo , Comportamento de Nidação/fisiologia , Reprodução/genética
8.
PLoS One ; 14(8): e0217049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398201

RESUMO

Lesser snow goose (Anser caerulescens caerulescens) populations have dramatically altered vegetation communities through increased foraging pressure. In remote regions, regular habitat assessments are logistically challenging and time consuming. Drones are increasingly being used by ecologists to conduct habitat assessments, but reliance on georeferenced data as ground truth may not always be feasible. We estimated goose habitat degradation using photointerpretation of drone imagery and compared estimates to those made with ground-based linear transects. In July 2016, we surveyed five study plots in La Pérouse Bay, Manitoba, to evaluate the effectiveness of a fixed-wing drone with simple Red Green Blue (RGB) imagery for evaluating habitat degradation by snow geese. Ground-based land cover data was collected and grouped into barren, shrub, or non-shrub categories. We compared estimates between ground-based transects and those made from unsupervised classification of drone imagery collected at altitudes of 75, 100, and 120 m above ground level (ground sampling distances of 2.4, 3.2, and 3.8 cm respectively). We found large time savings during the data collection step of drone surveys, but these savings were ultimately lost during imagery processing. Based on photointerpretation, overall accuracy of drone imagery was generally high (88.8% to 92.0%) and Kappa coefficients were similar to previously published habitat assessments from drone imagery. Mixed model estimates indicated 75m drone imagery overestimated barren (F2,182 = 100.03, P < 0.0001) and shrub classes (F2,182 = 160.16, P < 0.0001) compared to ground estimates. Inconspicuous graminoid and forb species (non-shrubs) were difficult to detect from drone imagery and were underestimated compared to ground-based transects (F2,182 = 843.77, P < 0.0001). Our findings corroborate previous findings, and that simple RGB imagery is useful for evaluating broad scale goose damage, and may play an important role in measuring habitat destruction by geese and other agents of environmental change.


Assuntos
Anseriformes , Baías , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Animais , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...