Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 6703-6717, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498309

RESUMO

Graphene doped with different transition metals has been recently proposed to adsorb CO2 and help reduce the greenhouse effect. Iron-doped graphene is one of the most promising candidates for this task, but there is still a lack of full understanding of the adsorption mechanism. In this work, we analyze the electronic structure, geometry, and charge redistribution during adsorption of CO2 molecules by single vacancy iron-doped graphene by DFT calculations using the general gradient approximation of Perdew, Burke, and Ernzernhof functional (PBE) and the van der Waals density functional (vdW). To understand the impact of the pyridinic-N coordination of the iron atom, we gradually replaced the neighboring carbon atoms by nitrogen atoms. The analysis indicates that chemisorption and physisorption occur when the molecule is adsorbed in the side-on and end-on orientation, respectively. Adsorption is stronger when pyridinic-N coordination increases, and the vdW functional describes the chemical interactions and adsorption energy differently in relation to PBE without significant structural changes. The development of the chemical interactions with the change of coordination in the system is further investigated in this work with crystal overlap Hamilton population (COHP) analysis.

2.
Sci Rep ; 13(1): 21369, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049457

RESUMO

We present a numerically-optimized multipulse framework for the quantum control of a single-electron double quantum dot qubit. Our framework defines a set of pulse sequences, necessary for the manipulation of the ideal qubit basis, that avoids errors associated with excitations outside the computational subspace. A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation. This basis generates spatially localized logical qubit states, making readout straightforward. We consider experimentally realistic semiconductor qubits with finite pulse rise and fall times and determine the fastest pulse sequence yielding the highest fidelity. We show that our protocol leads to improved control of a qubit. We present simulations of a double quantum dot in a semiconductor device to visualize and verify our protocol. These results can be generalized to other physical systems since they depend only on pulse rise and fall times and the energy gap between the two lowest eigenstates.

3.
J Phys Chem A ; 127(51): 10828-10837, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100036

RESUMO

The comparison between electrical transport in CnH2n+2S2 alkane and CnHn+2S2 alkene (n = 4, 6, 8, 10) is studied by using a generalized Breit-Wigner approach and considering coherent transport mechanisms and eventual changes in the state of charge (i.e., cotunneling processes) for both molecules. In general, the conductance of alkanes tends to be smaller than that of similar-sized alkenes. However, cotunneling processes have an important participation in the overall transport in the case of alkanes but not for the alkene family. The progressive changes in both the eigenenergies of the relevant frontier molecular orbitals of the charged species and their spatial localization play decisive roles in the observed differences. While the molecular orbitals of the charged species of the conjugated molecules are hardly affected by the applied voltage, their saturated counterparts are quite sensitive to the external field. With this, successive avoided-crossing events between the molecular orbitals of the single-charged alkane molecules can lead to the appearance of nonballistic conduction channels that make no negligible contributions to the molecular transport.

4.
ACS Omega ; 8(49): 46763-46776, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107885

RESUMO

This study focuses on a one-pot solvothermal synthetic route for the preparation of uniformly decorated zinc oxide nanoparticles on the surface of reduced graphene oxide (rGO/ZnO-NC) by using Andrographis paniculata leaf aqueous extract as an eco-friendly reducing agent. After characterizing the samples by different physical and chemical techniques, the anticancer activity of the synthesized rGO/ZnO-NC was examined on two human cancerous cell lines (HCT116 and A549) and one normal cell line (hMSCs). The MTT assays revealed that rGO/ZnO-NC exhibited dose-dependent cytotoxicity at a maximum concentration range of 10 ppm and the viability of the cells was drastically decreased to 95-96%. Measurement of reactive oxygen species (ROS) generation and Annexin V-FTIC staining assay revealed that rGO/ZnO-NC induced apoptosis in HCT116 and A549 cell lines. Thus, this study shows that the green-synthesized rGO/ZnO-NC has great potential in developing an efficacious novel therapeutic agent for cancers.

5.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836260

RESUMO

In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C K-edge. From the XMCD sum rules an estimated magnetic moment of 0.3 µB/C atom, while a more accurate estimation of 0.49 µB/C atom was obtained by carrying out a PNR measurement at 300 K. The results indicate that the higher magnetic moment in Co is counterbalanced by the larger lattice mismatch between the Co-C (1.6%) and the slightly longer bond length, inducing a magnetic moment in graphene that is similar to that reported in Ni/graphene heterostructures.

6.
ACS Omega ; 8(27): 24524-24543, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457483

RESUMO

Acute acetaminophen (APAP) toxicity is a predominant clinical problem, which causes serious liver injury in both humans and experimental animals. This study presents the histological and biochemical factor and antioxidant enzyme level changes induced by an acute acetaminophen overdose in Wistar albino rat livers to elucidate the effective hepatoprotective potential of biofabricated palladium nanoparticle-decorated reduced graphene oxide nanocomposites (rGO/PdNPs-NC) compared to silymarin. After detailed characterization of the hepatoprotective potential of the synthesized rGO/PdNPs-NC, the rats were divided into eight groups (n = 6): control group (normal saline, 1 mL/kg b.w.), silymarin, Punica granatum (pomegranate) peel extract, PdNPs, reduced graphene oxide (rGO-PG), and reduced graphene oxide palladium nanocomposites (rGO/PdNPs-NC, low and high doses) for 7 successive days. The acetaminophen (APAP)-treated group was administered a single dose of acetaminophen (2 g/kg b.w.) on the 8th day. The histopathological results showed that the acetaminophen overdose group exhibited massive intrahepatic hemorrhagic necrosis around the centrilobular region with hepatocytes with vacuolization and swollen cytoplasm found in the liver architecture. This hepatopotential was further assessed by various biochemical parameters such as SGOT, SGPT, ALB, ALP, LDH, direct bilirubin, total bilirubin, and total protein. Also, the antioxidant parameters such as SOD, CAT, MDA, GSH, GRD, and GST were assayed. Rats of groups 7 and 8 showed a significant decrease in SGOT, SGPT, ALP, LDH, direct bilirubin, and total bilirubin (p < 0.001), while a significant increase in the final total protein and ALB as compared to group 2 rats (p < 0.001) was observed. The antioxidant parameters exhibited that rats of groups 7 and 8 showed a significant (p < 0.001) increase in the level of SOD, CAT, GSH, GRD, and GST without affecting the MDA as compared to group 2 rats. Also, the hepatoprotective potential of rGO/PdNPs-NC (low and high doses) was comparable to that of the standard reference drug silymarin. The present study reveals that the rGO/PdNPs-NC possesses significant hepatoprotective activity and acts as an effective and promising curative agent against acetaminophen-induced hepatotoxicity.

7.
ACS Appl Mater Interfaces ; 15(18): 22367-22376, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092734

RESUMO

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 µB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 µB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene's Dirac cone as a result of the strong C pz-Ni 3d hybridization.

8.
ACS Omega ; 8(2): 2406-2420, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687032

RESUMO

This study mainly deals with an effective one-pot solvothermal synthetic pathway for the preparation of uniformly dispersed zirconium oxide nanoparticles on the flattened rough surface of reduced graphene oxide (ZrO2/rGO NCs) using the aqueous leaf extract of Andrographis paniculata. After obtaining detailed information on the preparation and characterization, the anticancer activity of the synthesized ZrO2/rGO nanocrystals (NCs) was evaluated on two human cancer cell lines (A549 and HCT116) along with one normal human cell line (hMSC). The 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assays revealed that ZrO2/rGO NCs exhibited a dose-dependent cytotoxicity pattern. The cell viability (%) drastically decreases up to 96-98% after exposure to an optimal concentration of 10 ppm nanocomposites. Analysis of both the reactive oxygen species generation and the Annexin V-FTIC staining assays reveal that ZrO2/rGO NCs have the ability to induce apoptosis in A549 and HCT116 cell lines. Thus, the green synthesis of ZrO2/rGO NCs shows potential in developing efficient therapeutic agents for cancer therapy.

9.
ACS Omega ; 7(30): 26174-26189, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936468

RESUMO

This article reports a benign environmentally friendly fabrication method of titanium dioxide (TDO) nanoparticles (named TDO NPs3, TDO NPs5, and TDO NPs8) using aqueous extract of durva herb waste. This synthesis process avoids use of harmful substances and persistent chemicals throughout the order and enables us to control the size of the nanomaterials. Characterization of TDO nanoparticles was analyzed by ultraviolet-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The morphological nature of the TDO samples was inspected by transmission electron microscopy, which indicated that the TDO NPs3, TDO NPs5, and TDO NPs8 were spherical in shape, with average sizes of 5.14, 12.54, and 29.61 nm, respectively. The stability of TDO nanoparticles was assessed using thermogravimetric analysis and dynamic light scattering analysis. These samples could be used for degradation of polluting industrial textile dyes, such as methylene blue (MB) and rhodamine B (Rh-B). Remarkably, the TDO NPs3 sample (5.14 nm size) exhibits a noticeable degradation of the MB dye in a shorter time period (50 min) than the TDO NPs8 sample with a size of 29.61 nm (120 min). The TDO NPs3 sample was also tested for degradation of Rh-B dye, showing high degradation efficiency over a short period of time (60 min). In contrast, the TDO NPs8 sample showed degradation of the Rh-B dye in 120 min. The effect of the dye concentration and the catalyst dose to remove dye pollutants has also been investigated. The synthesized TDO NPs act as exceptional catalysts for the degradation of dyes, and they are promising materials for the degradation of industrial polluting dyes.

10.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204525

RESUMO

We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu3O4, thin films grown on a Si/SiO2 substrate and Si/SiO2/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly textured crystalline Eu3O4(001) films are grown on both substrates, whereas the film deposited on graphene has a better crystallinity than that grown on the Si/SiO2 substrate. The SQUID measurements show that both films have a Curie temperature of ∼5.5±0.1 K, with a magnetic moment of ∼320 emu/cm3 at 2 K. The mixed valence of the Eu cations has been confirmed by the qualitative analysis of the depth-profile X-ray photoelectron spectroscopy measurements with the Eu2+:Eu3+ ratio of 28:72. However, surprisingly, our films show no metamagnetic behaviour as reported for the bulk and powder form. Furthermore, the microscopic optical images and Raman measurements show that the graphene underlayer remains largely intact after the growth of the Eu3O4 thin films.

11.
ACS Nano ; 15(4): 6765-6773, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33848131

RESUMO

Expanding nanomagnetism and spintronics into three dimensions (3D) offers great opportunities for both fundamental and technological studies. However, probing the influence of complex 3D geometries on magnetoelectrical phenomena poses important experimental and theoretical challenges. In this work, we investigate the magnetoelectrical signals of a ferromagnetic 3D nanodevice integrated into a microelectronic circuit using direct-write nanofabrication. Due to the 3D vectorial nature of both electrical current and magnetization, a complex superposition of several magnetoelectrical effects takes place. By performing electrical measurements under the application of 3D magnetic fields, in combination with macrospin simulations and finite element modeling, we disentangle the superimposed effects, finding how a 3D geometry leads to unusual angular dependences of well-known magnetotransport effects such as the anomalous Hall effect. Crucially, our analysis also reveals a strong role of the noncollinear demagnetizing fields intrinsic to 3D nanostructures, which results in an angular dependent magnon magnetoresistance contributing strongly to the total magnetoelectrical signal. These findings are key to the understanding of 3D spintronic systems and underpin further fundamental and device-based studies.

12.
Nanotechnology ; 31(43): 434001, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32748803

RESUMO

We report the magneto-optical Kerr effect (MOKE) study of magnetic topological insulator superlattice films with alternating transition-metal and rare-earth doping. We observe an unexpected hump in the MOKE hysteresis loops upon magnetization reversal at low temperatures, reminiscent of the topological Hall effect (THE) reported in transport measurements. The THE is commonly associated with the existence of magnetic skyrmions, i.e. chiral spin textures originating from topological defects in real space. Here, the observation of the effect is tied to ferromagnetic ordering in the rare-earth-doped layers of the superlattice. Our study may provide a new approach for the non-invasive optical investigation of skyrmions in magnetic films, complementary to electrical transport measurements, where the topological Hall signal is often the only hint of non-trivial magnetization patterns.

13.
Nat Commun ; 11(1): 3775, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728082

RESUMO

In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool.

14.
Nano Lett ; 20(7): 5315-5322, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551677

RESUMO

Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.

15.
Nano Lett ; 20(5): 3642-3650, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32250635

RESUMO

Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni-Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.

16.
Nat Commun ; 10(1): 4557, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594936

RESUMO

Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

17.
Nanotechnology ; 30(41): 415701, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31265997

RESUMO

The paper aims to compare zeta potentials, magnetic properties, electron spin resonance, photoluminescence (PL) spectra and antitumor effect of magneto-mechano-chemically synthesized magneto-sensitive nanocomplexes loaded with the anticancer drug doxorubicin (DOXO) during nanotherapy of Walker-256 carcinosarcoma carried out by a magnetic resonance system. Diamagnetic DOXO acquired the properties of a paramagnetic substance after synthesis. MNC comprising superparamagnetic nanoparticles (NP) and DOXO had different g-factors, zeta potentials, a lower saturation magnetic moment, area of the hysteresis loop, and a higher coercivity compared to similar MNC with ferromagnetic NP. The main PL peak of MNC spectrum was defined by DOXO at 598 nm. MNC composed of superparamagnetic NP and DOXO showed a lower standard deviation of the normal PL spectral distribution than MNC based on ferromagnetic NP in relation to conventional DOXO. MNC containing superparamagnetic NP responded to resonance conditions leading to a more pronounced antitumor effect compared to MNC with ferromagnetic NP in the course of magnetic nanotherapy for Walker-256 carcinosarcoma bearing animals (temperature inside the tumor did not exceed 40 °C). Therefore, these findings are associated with differences in chemotherapeutic effect between MNC due to a different surface charge and conformational changes in DOXO molecules during its magnetoelectric interaction with single- and multidomain NP.


Assuntos
Compostos Férricos/química , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Tamanho da Partícula , Ratos , Temperatura
18.
ACS Appl Bio Mater ; 2(9): 3954-3963, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021328

RESUMO

The biological and medical aspects of magnetochemical effects in nanotherapy of tumors remain poorly studied. The present paper investigates the influence of nonlinear magnetochemical effects of anisotropic magnetic nanodots on an animal tumor model. The magnetic properties and electron spin resonance spectra of magnetic nanodots and doxorubicin were investigated after mechano-magnetochemical synthesis. The results obtained from the analysis of nonlinear kinetics and survival in Walker-256 carcinosarcoma-bearing animals found a nonlinear dependence between the value of the growth factor, braking ratio, survival rate, tumor redox state, and the treatment by the magnetic nanodot combined with a nonuniform constant magnetic field. To quantify the heterogeneity in microphotographs of Walker-256 carcinosarcoma sections, we applied the entropy parameter. The control (no treatment) group showed the greatest heterogeneity. The lowest value of tumor heterogeneity among animals given treatment was found in groups with the minimum growth factor. Similarly, the lowest entropy value was found in muscle tissue taken from inoculation areas of the tumor. The evidence from this study concluded that inhomogeneous constant magnetic fields with different strength applied to heterogeneous tumor tissues induced different magnetic anisotropy in the magnetic nanodot which had a significant influence on the nonlinear kinetics, redox state, and histological pattern of the tumor.

19.
Sci Rep ; 8(1): 17024, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451885

RESUMO

Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2-xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.

20.
Nanomedicine ; 14(4): 1249-1256, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29597047

RESUMO

Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded Fe3O4 nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.49 ± 0.02 day-1 (compared to 0.58 ± 0.02 day-1 for conventional doxorubicin). Electron spin resonance spectra of Walker-256 carcinosarcoma treated with the nanodots, indicate an increase of 2.7 times of free iron (that promotes the formation of highly reactive oxygen species), using the nanodot with the largest hysteresis loop area, compared to conventional doxorubicin treatment as well as increases in ubisemiquinone, lactoferrin, NO-FeS-proteins. Hence, we provide evidence that the designed magnetic nanodots can modulate the tumor redox state. We discuss the implications of these results for cancer nanotherapy.


Assuntos
Doxorrubicina/química , Nanopartículas de Magnetita/química , Animais , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Lactoferrina/química , Masculino , Oxirredução , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...