Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 168(2): 335-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21879367

RESUMO

The most common currency for estimating N(2) fixation is acetylene reduction to ethylene. Real-time estimates of nitrogen fixation are needed to close the global nitrogen budget and these remain a critical gap in both laboratory and field experiments. We present a new method for continuous real-time measurements of ethylene production: Acetylene Reduction Assays by Cavity ring-down laser Absorption Spectroscopy (ARACAS). In ARACAS, air in the headspace of an incubation chamber is circulated with a diaphragm pump through a cavity ring-down ethylene spectrometer and back to the incubation chamber. This paper describes the new approach and its benefits compared to the conventional detection of ethylene by flame ionization detector gas chromatography. First, the detection of acetylene reduction to ethylene is non-intrusive and chemically non-destructive, allowing for real-time measurements of nitrogenase activity. Second, the measurements are made instantaneously and continuously at ppb levels, allowing for observation of real-time kinetics on time intervals as short as a few seconds. Third, the instrument can be automated for long time periods of measurement. Finally, the technique will be widely accessible by the research community as it can be readily adapted to most existing acetylene reduction protocols and is based on a modestly priced, commercially available instrument. We illustrate its use for measuring N(2) fixation using two species, the diazotrophic bacterium Azotobacter vinelandii and the lichen Peltigera praetextata. We also discuss potential limitations of the approach, primarily the implications of leaks in the analyzer, as well as future improvements.


Assuntos
Acetileno/química , Azotobacter vinelandii/metabolismo , Fixação de Nitrogênio , Análise Espectral/métodos , Cinética
2.
Anal Chem ; 81(5): 1855-64, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19193192

RESUMO

The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.


Assuntos
Argônio/química , Espectrometria de Massas/métodos , Oxigênio/química , Calibragem , Gases/química , Isótopos de Oxigênio/química
3.
Science ; 317(5841): 1067-70, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17717181

RESUMO

Biogeochemical rate processes in the Southern Ocean have an important impact on the global environment. Here, we summarize an extensive set of published and new data that establishes the pattern of gross primary production and net community production over large areas of the Southern Ocean. We compare these rates with model estimates of dissolved iron that is added to surface waters by aerosols. This comparison shows that net community production, which is comparable to export production, is proportional to modeled input of soluble iron in aerosols. Our results strengthen the evidence that the addition of aerosol iron fertilizes export production in the Southern Ocean. The data also show that aerosol iron input particularly enhances gross primary production over the large area of the Southern Ocean downwind of dry continental areas.


Assuntos
Ecossistema , Ferro/análise , Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Vento , Atmosfera , Oceanos e Mares , Oxigênio/análise , Estações do Ano , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...