Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 3: 900, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22692543

RESUMO

Alternative promoter usage and alternative splicing enable diversification of the transcriptome. Here we demonstrate that the function of Synaptic GTPase-Activating Protein (SynGAP), a key synaptic protein, is determined by the combination of its amino-terminal sequence with its carboxy-terminal sequence. 5' rapid amplification of cDNA ends and primer extension show that different N-terminal protein sequences arise through alternative promoter usage that are regulated by synaptic activity and postnatal age. Heterogeneity in C-terminal protein sequence arises through alternative splicing. Overexpression of SynGAP α1 versus α2 C-termini-containing proteins in hippocampal neurons has opposing effects on synaptic strength, decreasing and increasing miniature excitatory synaptic currents amplitude/frequency, respectively. The magnitude of this C-terminal-dependent effect is modulated by the N-terminal peptide sequence. This is the first demonstration that activity-dependent alternative promoter usage can change the function of a synaptic protein at excitatory synapses. Furthermore, the direction and degree of synaptic modulation exerted by different protein isoforms from a single gene locus is dependent on the combination of differential promoter usage and alternative splicing.


Assuntos
Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Sequência de Aminoácidos , Animais , Eletrofisiologia , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/enzimologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/genética
2.
Development ; 128(21): 4329-38, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11684667

RESUMO

Branching morphogenesis of epithelium is a common and important feature of organogenesis; it is, for example, responsible for development of renal collecting ducts, lung airways, milk ducts of mammary glands and seminal ducts of the prostate. In each case, epithelial development is controlled by a variety of mesenchyme-derived molecules, both soluble (e.g. growth factors) and insoluble (e.g. extracellular matrix). Little is known about how these varied influences are integrated to produce a coherent morphogenetic response, but integration is likely to be achieved at least partly by cytoplasmic signal transduction networks. Work in other systems (Drosophila tracheae, MDCK models) suggests that the mitogen-activated protein (MAP) kinase pathway might be important to epithelial branching. We have investigated the role of the MAP kinase pathway in one of the best characterised mammalian examples of branching morphogenesis, the ureteric bud of the metanephric kidney. We find that Erk MAP kinase is normally active in ureteric bud, and that inhibiting Erk activation with the MAP kinase kinase inhibitor, PD98059, reversibly inhibits branching in a dose-dependent manner, while allowing tubule elongation to continue. When Erk activation is inhibited, ureteric bud tips show less cell proliferation than controls and they also produce fewer laminin-rich processes penetrating the mesenchyme and fail to show the strong concentration of apical actin filaments typical of controls; apoptosis and expression of Ret and Ros, are, however, normal. The activity of the Erk MAP kinase pathway is dependent on at least two known regulators of ureteric bud branching; the GDNF-Ret signalling system and sulphated glycosaminoglycans. MAP kinase is therefore essential for normal branching morphogenesis of the ureteric bud, and lies downstream of significant extracellular regulators of ureteric bud development.


Assuntos
Proteínas de Drosophila , Rim/embriologia , Rim/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Crescimento Neural , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Flavonoides/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Glicosaminoglicanos/metabolismo , Rim/efeitos dos fármacos , Mesoderma , Camundongos , Camundongos Endogâmicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases , Proteínas Repressoras/metabolismo , Ureter/embriologia , Ureter/metabolismo
3.
Biochem Soc Trans ; 29(Pt 2): 166-71, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11356147

RESUMO

Glycosaminoglycans (GAGs) are linear polymers of amino sugar uronic acid disaccharides, and are generally attached to protein cores to form proteoglycans. GAGs interact with a large number of proteins and can participate in matrix organization, cell adhesion, differentiation, growth and apoptosis. Proteoglycans are expressed in tightly regulated spatio-temporal patterns during organ development, and changes in expression frequently correlate with developmental events. Here we review the evidence that GAGs play important roles in the development of mouse kidneys, which are organs that will undergo organotypic development in simple culture conditions and that are therefore highly accessible to experimentation. Depleting kidneys of GAGs, either biochemically or genetically, blocks the development of the urinary collecting-duct system, probably because critical signalling molecules require GAGs to form stable associations with their receptors. The insensitivity of GAG-deprived organ rudiments to physiological concentrations of growth factors can be used to screen candidate signalling molecules for morphoregulatory activity; candidate growth factors are applied at supraphysiological levels to GAG-deprived kidneys and assessed for their ability to rescue normal development. This approach has assisted the identification of four collecting-duct morphogens: hepatocyte growth factor, glial cell line-derived neurotrophic factor, nerturin and persephin.


Assuntos
Glicosaminoglicanos/metabolismo , Rim/embriologia , Rim/metabolismo , Morfogênese , Animais , Glicosaminoglicanos/deficiência , Glicosaminoglicanos/genética , Substâncias de Crescimento/análise , Substâncias de Crescimento/metabolismo , Substâncias de Crescimento/farmacologia , Rim/efeitos dos fármacos , Camundongos , Morfogênese/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Transdução de Sinais/efeitos dos fármacos
4.
Mech Dev ; 102(1-2): 157-67, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11287189

RESUMO

We have identified the Xenopus homologue of Drosophila Enhancer of Zeste using a differential display strategy designed to identify genes involved in early anterior neural differentiation. XEZ codes for a protein of 748 amino acids that is very highly conserved in evolution and is 96% identical to both human and mouse EZ(H)2. In common with most other Xenopus Pc-G genes and unlike mammalian Pc-G genes, XEZ is anteriorly restricted. Zygotic expression of XEZ commences during gastrulation, much earlier than other anteriorly localized Pc-G genes; expression is restricted to the anterior neural plate and is confined later to the forebrain, eyes and branchial arches. XEZ is induced in animal caps overexpressing noggin; up-regulation of XEZ therefore represents a response to inhibition of BMP signalling in ectodermal cells. We show that the midbrain/hindbrain junction marker En-2,and hindbrain marker Krox-20, are target genes of XEZ and that XEZ functions to repress these anteroposterior marker genes. Conversely, XEZ does not repress the forebrain marker Otx-2. XEZ overexpression results in a greatly thickened floor of the forebrain. These results implicate an important role for XEZ in the patterning of the nervous system.


Assuntos
Proteínas de Drosophila , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte , Diferenciação Celular , Clonagem Molecular , Sequência Conservada , DNA Complementar/metabolismo , Ectoderma/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Evolução Molecular , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Técnicas de Cultura de Órgãos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Prosencéfalo/metabolismo , Proteínas/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Xenopus , Proteínas de Xenopus
5.
Dev Biol ; 222(2): 405-19, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10837128

RESUMO

Homologues of the murine Brachyury gene have been shown to be involved in mesoderm formation in several vertebrate species. In frogs, the Xenopus Brachyury homologue, Xbra, is required for normal formation of posterior mesoderm. We report the characterisation of a second Brachyury homologue from Xenopus, Xbra3, which has levels of identity with mouse Brachyury similar to those of Xbra. Xbra3 encodes a nuclear protein expressed in mesoderm in a temporal and spatial manner distinct from that observed for Xbra. Xbra3 expression is induced by mesoderm-inducing factors and overexpression of Xbra3 can induce mesoderm formation in animal caps. In contrast to Xbra, Xbra3 is also able to cause the formation of neural tissue in animal caps. Xbra3 overexpression induces both geminin and Xngnr-1, suggesting that Xbra3 can play a role in the earliest stages of neural induction. Xbra3 induces posterior nervous tissue by an FGF-dependent pathway; a complete switch to anterior neural tissue can be effected by the inhibition of FGF signalling. Neither noggin, chordin, follistatin, nor Xnr3 is induced by Xbra3 to an extent different from their induction by Xbra nor is BMP4 expression differentially affected.


Assuntos
Proteínas Fetais , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Sistema Nervoso/embriologia , Proteínas com Domínio T/genética , Proteínas de Xenopus , Xenopus laevis/embriologia , Sequência de Aminoácidos , Animais , Primers do DNA , Embrião não Mamífero/fisiologia , Biblioteca Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas com Domínio T/química , Proteínas com Domínio T/metabolismo
6.
Dev Growth Differ ; 40(1): 47-57, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9563910

RESUMO

Two natural neural inducing sources have been used, the notochord and the somites together with the growth factor bFGF, to investigate the anterior/posterior patterning of neural tissue in an animal cap explant model in Xenopus laevis. Notochord and somite tissue from stages 12.5/13 and 16, respectively, were manually isolated, and combined heterochronically with responding animal cap ectoderm aged to gastrula stages. Somite recombinants were also constructed with animal caps injected with noggin mRNA. The responses of the ectoderm were analyzed by reverse transcription polymerase chain reaction (RT-PCR) detection of marker gene expression, and in some cases by in situ hybridization. The requirement for FGF receptor function was analyzed using the dominant negative FGF receptor (XFD). The experiments showed that bFGF is capable of direct neural induction in caps aged to stage 10.5. It was also shown that notochords are capable of inducing anterior neural tissue in gastrula stage animal cap ectoderm, and this induction is sensitive to XFD in the responding tissue. Injection of noggin mRNA results in the induction of anterior neural differentiation, and it was demonstrated that this induction was insensitive to the expression of XFD in the responding tissue. It was also shown that somite tissue recombined with gastrula stage animal cap ectoderm, can induce both anterior and posterior nervous tissue and can also posteriorize noggin-induced anterior neural tissue when combined with noggin-injected animal cap ectoderm. This response is partially sensitive to XFD expression. The results shed light on the role of competence of animal cap ectoderm and the signals from postgastrulation axial and paraxial mesoderm in the patterning of the amphibian nervous system.


Assuntos
Indução Embrionária/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Sistema Nervoso/embriologia , Notocorda/fisiologia , Somitos/fisiologia , Animais , Padronização Corporal/fisiologia , Proteínas de Transporte , Técnicas de Cultura , Ectoderma/fisiologia , Gástrula , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/análise , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...